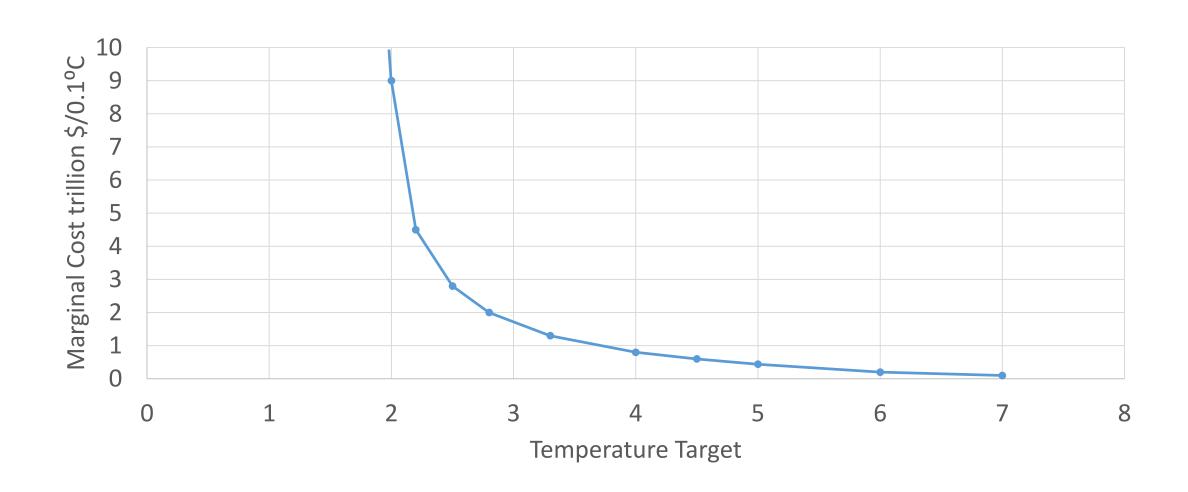

"Can We Survive Climate Change? The Critical Role of Adaptation"

Robert Mendelsohn Yale University

> Georgia Tech 11/29/2018

Global greenhouse gas emissions are still growing

Global greenhouse gas emissions, per type of gas and source, including LULUCF



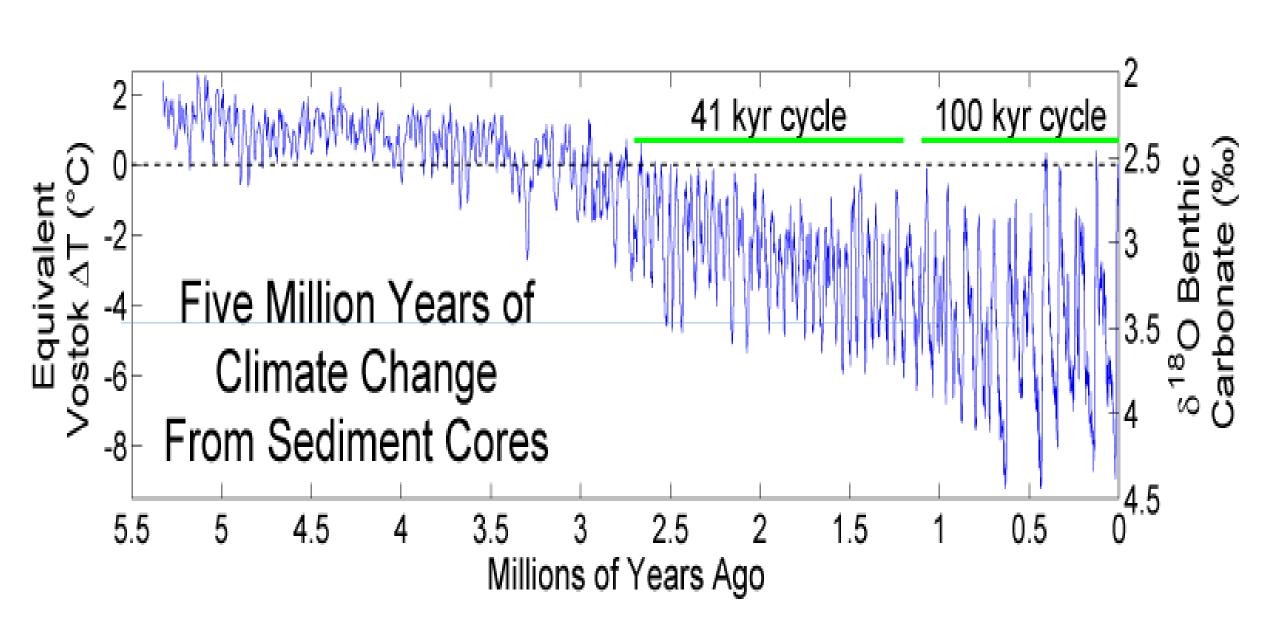
Source: EDGAR v4.3.2 (EC-JRC/PBL 2017); Houghton and Nassikas (2017); GFED 4.1s (2017)

Why is mitigation failing?

- Weak Global Governance
 - Efficient mitigation requires global cooperation
 - Countries must agree to a single price for greenhouse gases
 - With fewer participants, mitigation is much less effective
 - Not in any country's self-interest to mitigate all by itself
 - Costs will be paid entirely by self and benefits will be shared broadly
- Mitigation is expensive
 - Lower temperature targets cost a lot more
 - Must mitigate a lot sooner, leave more capital stranded
 - People do not support all mitigation activities
 - Nuclear power, more expensive energy, more hydropower, land use controls

Marginal Cost (\$trillion/0.1°C)

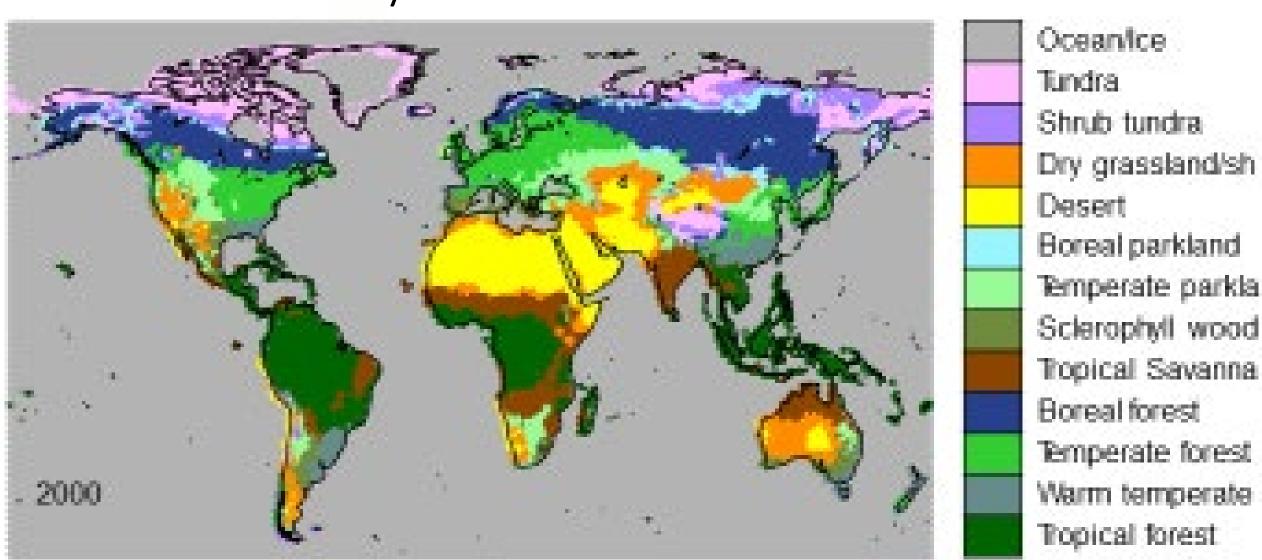
How much mitigation can we expect?

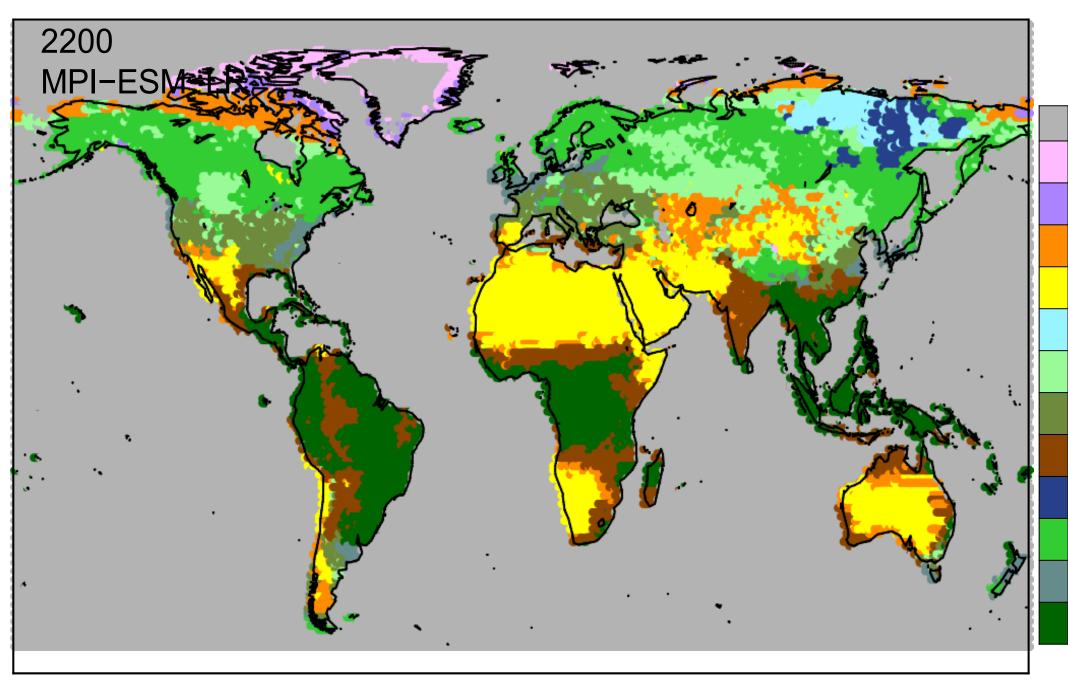

- Paris Agreement sought target of 1.5°C but made mitigation commitments that would lead to 4°C warming
 - Not clear countries will meet their own targets
- Limiting long run temperature to 4-5°C is possible
 - Not that expensive
- But can we survive that much warming?

What are the biggest threats from warming the planet 4-5°C by 2150-2200?

- Ecosystem collapse
- Sea level rise of 64 m
- Food supply collapse
- Health effects (heat waves, infectious disease, ozone)

Ecosystem Collapse


- Are ecosystems robust to global temperature?
- Ecosystems have survived past warmer climates of at least 2°C
- Ecosystems have survived wide swings (9°C) in global temperature over last million years
- But can ecosystems survive 4-5°C?



Ecosystems move across the earth with warming

- Models and past records show ecosystems adapt to warmer temperatures by moving poleward and to higher altitudes
- Shares of land change across systems
 - Parkland and temperate forests replace tundra and boreal forest in high latitudes
 - Tropical forest, warm temperate forest and woodlands replace temperate forest in mid latitudes
 - Savannah starts to replace tropical forest and deserts start to replace grassland and parkland in low latitudes
- Overall land changes are offsetting up to 2150 and then become harmful

Current Ecosystems of World

Ice Tundra Shrub tun Grassland Desert Boreal par Temperate Woodland Tropical sa Boreal for

Temperate

Warm ter

Tropical fo

Other ecosystem changes from warming

- Models predict forest, woodland, and parkland NPP (growth) increases up to 6°C (2150) and then flatten
- Models are split concerning whether biomass increases or falls
- Past climate changes from glacial cycles have not led to dramatic loss of species
- Sudden changes in climate from meteor strikes and large scale volcanic explosions have led to mass extinctions

Humans can facilitate ecosystem adaptation

- Forest companies can shift species and varieties to help commercial managed forests move poleward
- Conservation can take a dynamic approach to saving ecosystems by facilitating change
 - Design conservation pathways that give ecosystems space to move
 - For example, setting aside corridors along north-south mountain chains such as the Appalachians, Rocky Mountains, and Sierras
 - Conservation can facilitate change- assist invasive species
 - Actively manage conserved lands
- We can help endangered species adapt to new locations

Sea level rise (SLR)

- Warming above 2C increases probability that ice sheets will melt
- Past records of glacial cycles reveal dramatic swings in ice sheets and ocean levels over long periods of time
- Existing ice sheets hold a lot of water
 - Greenland-6 m of potential sea level
 - Antarctica-58 m of potential sea level
- Over 136 port cities with over a million people would be inundated by 64 m of SLR

How will SLR change over time?

- A sudden change in mean sea level of 64 m would have catastrophic effects on humans
 - All but a few major cities would be inundated
 - Ports (trading) would be lost
- But global warming does not provide enough heat to melt all of the ice sheets suddenly
- Ice sheets will take 500 to 10,000 years to melt completely
- Consequence is likely doubling of sea level rise (SLR)
 - Over next century, that implies SLR going from 3 mm/yr to 6 mm/yr

Can we adapt to a doubling of SLR?

- Next century
 - Build walls around ports and urban areas
 - Start with low walls and gradually over decades increase height
 - Retreat from less developed areas as they become inundated
- Far future
 - Consider large scale protection projects
 - Dam the Mediterranean at Gibraltar
 - Dam San Francisco Bay at Golden Gate Bridge
 - Dam New York harbor
 - Dam Baltic Sea in Denmark
 - Retreat inland

SLR damage

- If there is no adaptation, a doubling of SLR would cause a global net present value damage of about \$11 trillion (Diaz 2016)
- With urban protection and rural retreat, however, the overall cost of doubling SLR is just \$1.7 trillion
- SLR remains an important damage of future warming but adaptation reduces the damage by 7 fold

Is the global food supply robust?

- Crops and livestock all prefer specific temperature ranges
 - Yields fall as temperatures move out of these ranges
 - Yields could fall 6-8%/°C
 - Crop yields increase with CO₂ (carbon fertilization)
 - Offsets some of the warming effect
 - Expected increase in precipitation would also help offset losses
 - Nonetheless, warming without any adaptation is likely to gradually reduce global food output

Farm adaptation

- Farmers could mimic nature and move crops poleward
 - Farmers can switch crops and livestock as temperatures warm effectively moving crops and livestock poleward
 - Movement effectively keeps crops in desired temperature range- no yield loss
 - Eventually, though, limited land available poleward
- Intensification
 - Historic rate of productivity increase is 2%/year
 - Primarily earned by adding more inputs
 - Improvements in varieties have also helped
 - Countries can subsidize research into new varieties

Farmers can irrigate

- Farmers can irrigate crops
 - Increases yields and increases temperature tolerance of crops
 - Southeast Asia has average temperatures of 30°C and most productive farms in the world because of irrigation
 - In many places, limited water available
 - Shift farming to places with abundant water
- Water management
 - Water can be managed more efficiently so leads to higher value
 - This will mean less water for agriculture
 - But yields/water can be substantially improved with investments into technology
 - Move from gravity irrigation to drip irrigation

Farm Adaptation

- A 5°C warming by 2150 would reduce aggregate global food supply by 30-50%
- With carbon fertilization, global food supply would likely fall by 10-40%
- With crop movement, irrigation, and intensification, yields could continue to increase at 2%/yr, causing overall global food supply to increase by 130 fold
- Global warming loss can be compensated through intensification and adaptation- very likely making global food supply robust

Heat waves

- Heat waves cause significant deaths
- Can prevent deaths with cooling
 - Fans in developing countries
 - Air conditioning in middle and high income countries
 - As countries develop, more people are middle and high income
 - Air conditioning will spread throughout low latitudes
 - Heat wave deaths will likely fall
 - Effect of heat waves will be largely cost of air conditioning
 - Increased demand for energy not more deaths

Infectious disease

- Warming will allow many powerful infectious disease to spread
 - Diarrhea, respiratory disease, malaria, dengue fever, and others kill millions today
 - Climate change could permit these diseases to spread
 - Without any response, climate change could expose millions of additional people
- Public health measures can almost eliminate these diseases
 - Middle to high income countries control most of these diseases
 - World Bank predicts future economic growth will largely eliminate these diseases as countries transition away from being very poor
- Global public health response can address remaining problem areas
 - Remaining adaptation cost in public health expenditure but not deaths

Ozone

- Warming will lengthen warm weather in which ozone will form
- If no measures are taken, will lead to higher ozone exposure
- Ozone harmful to plants (trees and crops) and people
- Adaptation is to control precursors (Nitrogen oxides and VOC's)
 - Can limit ozone with air pollution control devices

Conclusion

- Poor mitigation response is likely to lead to a warmer planet
- Society can adapt to each threat of a warmer planet
- There will be remaining damage and adaptation will require resources
- But we will survive a warmer planet
- If we overestimate our ability to adapt or the remaining damage is much higher than we expect, we can turn to cooling the planet on purpose with geoengineering