







Introduction to Drawdown Georgia's Emissions Dashboard Project

> Forestry and Agriculture Sectors Experts Meeting October 29, 2021

Drs. Jackie Mohan and Jeff Mullen, University of Georgia Dr. Bill Drummond, Georgia Institute of Technology

DRAWDOWN

www.DrawdownGA.org

#### Agenda



10:00 Welcome & Intro to Drawdown Georgia (Drs. Jackie Mohan and Jeff Mullen)

- -- Please use "chat" for asking questions
- Ollie Chapman will collect and read them out
- -- The session will be recorded but not shared publicly

10:10 Forestry sector emissions (Dr. Bill Drummond) 10:25 Q&A

10:35 Agriculture sector emissions (Dr. Bill Drummond) 10:45 Q&A

10:55 Next Steps and Wrap up (Drs. Jackie Mohan and Jeff Mullen)

Localized climate solutions can help during this "decisive decade" — but where is the atlas of state and local roadmaps?



•The **Drawdown Georgia** project aims to identify and activate the most promising solutions to significantly reduce Georgia's net carbon emissions by 2030.

•Our methodology can be adapted to fit other states, counties and even cities.





Research conducted at Georgia Tech, University of Georgia, Emory University, Georgia State and other partners. Funded by the Ray C. Anderson Foundation.

### **Trajectory of the Drawdown Georgia Project**



# We're bringing climate solutions home.

Inspired by Project Drawdown<sup>®</sup>, we are building a movement in Georgia to accelerate progress toward net zero greenhouse gas emissions.

#### NEW YORK TIMES BESTSELLER





bringing climate solutions home

#### **Starting Point: Project Drawdown Solutions**



#### **Trajectory of the Drawdown Georgia Project**

GRAWDOWN

6

The Drawdown Georgia research team ran ~100 global solutions through a series of filters:



- Is the solution relevant in Georgia?
- Is it technology and market ready to scale by 2030?
- Is there sufficient local experience and available data?
- Can the solution deliver 1 million metric tons of annual GHG reduction by 2030?
- Is it cost competitive with other solutions?
- Are there significant "beyond carbon" impacts?

Brown, Marilyn A., et al. (2021) "Translating a Global Emission-Reduction Framework for Subnational Climate Action: A Case Study from the State of Georgia," *Environmental Management*. 67: 205-227. <u>https://doi.org/10.1007/s00267-020-01406-1</u>.

#### **Result: 20 Drawdown Georgia Solutions for 2030 + Beyond Carbon Dimensions**

#### Electricity



Cogeneration





Large-Scale Solar

Landfill Methane

#### Transportation

- ģ **Electric Vehicles**
- æ **Energy-Efficient Cars** 
  - **Energy-Efficient Trucks**
  - Mass Transit
- <u>8</u> Alternative Mobility

#### Land Sinks



¢

Afforestation & Silvopasture

**Coastal Wetlands** 



ΩQ

**Temperate Forest Protection &** Management

#### Food & Agriculture



- Composting
- **Conservation Agriculture**



<u>کار</u>

Ż

**Plant Rich Diet** 

**Reduced Food Waste** 

**Buildings & Materials** 

- 5
  - Recycling



**Refrigerant Management** 

**Retrofitting Buildings** 



**Environmental Quality** 

## Georgia can reduce its carbon footprint by 50% by 2030 below its 2005 baseline

28 Mt  $CO_2$  reduction from 156 Mt  $CO_2$  in 2005 to 128 in 2017 (12 years)



49 Mt  $CO_2$ reduction from 128 Mt  $CO_2$  in 2017 to 79 in 2030 (13 years)

H

Source: Brown, et al. 2021. Framework for Localizing Global Climate Solutions and their Carbon Reduction Potential," Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.2100008118

#### Annual CO<sub>2</sub>e Storage from Afforestation + Silvopasture (in PASTURES Only)





**1 MtCO<sub>2</sub>e solution** in 2030 = Planting **7%** of current Pasture lands with mixed hardwood & loblolly tree species using staggered planting times. **Baseline =** Currently very little Silvopasture efforts in Georgia.

Achievable Potential = 2.8 MtCO<sub>2</sub>e per year by 2030.

**Technical Potential = 14.3 MtCO<sub>2</sub>e** 

**Extreme Technical Potential** = 19.5 MtCO<sub>2</sub>e

- +Improved health & productivity of livestock
- +Biodiversity
- +Improved stream water quality
- Potential slight reduction in forage availability



- Planting current GA Pastures with 7% Tree Density would annually sequester 1 MtCO<sub>2</sub>e by 2030
- Higher planting densities (20%, 100%), more CO<sub>2</sub>e sequestration
- Pines more productive that Hardwoods, but Caveats
- Scattered shade increases Health and Productivity of Livestock, thus benefits farmers.
- Federal and NGO programs that compensate farmers for planting trees

#### Old-growth HW Forest Pine Stand, ~12" Dark soil C little Dark soil C



Α





GA





В

**C** 1993 Farm Soil, very little Dark soil C

2020 Farm Soil, ~15" Dark C-rich soil

#### **Tracking Composting**



- Focus on Food Waste Stream in Public K-12 School Districts
- Identify type and volume of food service items purchased, and expenditures using publicly available procurement portals
- Compare cost of procuring compostable and non-compostable food packaging and service ware with and without current federal and state subsidies
- Integrate cost comparisons into the dashboard to illustrate the effect of federal and state subsidies on expenditures at the school district level

#### **Tracking Composting**

**GRAWDOWN** 

- Conduct a Life-Cycle Analysis (LCA) of GHG emissions for compostable v. noncompostable food packaging and service ware
- Integrate LCAs into the dashboard to illustrate the GHG emission reduction potential of adopting a compost-oriented food waste disposal system by school district
- Compare the disposal costs of a compostable v. non-compostable food waste stream by school district given the current composting infrastructure
- Identify the optimal location of compost sites within the state to minimize the cost of disposal of compostable food waste and food packaging and service ware
- Integrate the optimal compost sites into the dashboard

## Our current task focus on solution activation













ŝ









c

-







Ω

Ħ

Ľ











Inspired by Project Drawdown, we are building a movement in Georgia to accelerate progress toward net zero greenhouse gas (GHG) emissions. This dashboard tracks GHG emissions in Georgia. Filter by date, county, or sector using the selectors, or click on a county directly on the map. Hold the Ctrl button down to select multiple counties; click outside the state to clear county selections. Note that emissions data for each month is dated on the 1st.

To learn more about Drawdown Georgia, visit drawdownga.org

## Why Geospatial Tracking?



- Our goal is to construct an interactive, online dashboard to
- Give people reasonable estimates of their local area emissions up to the most recent month possible,
- In seven major sectors:
  - Electricity
  - Industrial
  - Commercial
  - Residential
  - Transportation
  - Agriculture
  - Forestry
- Using (mostly) open-source software and publicly available data

### DRAWDOWN GGA

## Our general strategy

- Identify recent annual or monthly data sources for Georgia statewide emissions, including
  - EPA's State Inventory Tool
  - EIA's Open Data API
  - US-DOT's Traffic Trends monthly VMT
- Allocate the statewide totals to individual counties with plausible indicator variables
- Interpolate annual data to monthly data when needed
- Avoid proprietary data
- Avoid data that is specific to a single state

# Forestry sector emissions

## Forestry data sources

- EPA State Inventory Tool (SIT) for statewide forestry uptake
- National Land Cover Dataset (NLCD)
  - 30-meter raster coverage with
  - 19 land use categories, including
  - Deciduous, evergreen, and mixed forest, and woody wetlands
- NOAA 1990-2020 station-level climatology with growing degree days between 50 and 86 degrees F
- Oak Ridge National Laboratory estimates of county forest flux from 2010-2016

## Forestry strategy

- Use **NLCD** to sum forestry area by county from four classes
- Interpolate between years and forecast by 10-year linear trend
- Use **ORNL** data to calculate county uptake per acre
- Multiply uptake per acre by county forest acres to calculate county uptake
- Calculate county percentage shares of statewide uptake
- Multiply **SIT** annual forestry uptake times county shares to calculate county annual uptake
- Calculate each county's total **GDDs** and each month's percentage of the annual total
- Multiply county GDD monthly shares times annual uptake to calculate monthly uptake

## EPA State Inventory Tool for Georgia Forestry Emissions and Uptake in MMTCO<sub>2</sub>e

| Emissions by Sector                                    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |      |
|--------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Energy                                                 | 191.21  | 188.49  | 190.81  | 176.97  | 167.23  | 176.31  | 160.59  | 140.25  | 138.24  | 142.76  | 140.30  | 140.12  | 138.15  | 137.54  | 89%  |
| CO <sub>2</sub> from Fossil Fuel Combustion            | 186.77  | 184.32  | 186.86  | 173.34  | 163.85  | 172.97  | 157.47  | 137.36  | 135.39  | 139.91  | 137.60  | 137.42  | 135.57  | 134.96  | 87%  |
| Stationary Combustion                                  | 0.88    | 0.88    | 0.89    | 0.81    | 0.77    | 0.85    | 0.78    | 0.66    | 0.71    | 0.77    | 0.66    | 0.67    | 0.61    | 0.62    | 0%   |
| Mobile Combustion                                      | 2.11    | 1.86    | 1.62    | 1.38    | 1.18    | 1.05    | 0.90    | 0.79    | 0.70    | 0.64    | 0.60    | 0.59    | 0.53    | 0.52    | 0%   |
| Coal Mining                                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | 0%   |
| Natural Gas and Oil Systems                            | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1%   |
| Industrial Processes                                   | 4.66    | 4.98    | 5.20    | 5.65    | 5.92    | 6.20    | 6.38    | 6.51    | 6.59    | 6.88    | 7.00    | 6.96    | 7.03    | 7.13    | 5%   |
| Agriculture                                            | 7.62    | 7.69    | 7.93    | 7.52    | 7.40    | 7.13    | 6.80    | 7.15    | 7.26    | 7.35    | 7.57    | 7.19    | 7.25    | 7.07    | 5%   |
| Enteric Fermentation                                   | 2.15    | 2.11    | 2.10    | 2.02    | 1.97    | 1.92    | 1.87    | 1.90    | 1.86    | 1.90    | 1.89    | 1.99    | 1.99    | 1.92    | 1%   |
| Manure Management                                      | 1.67    | 1.65    | 1.71    | 1.67    | 1.60    | 1.58    | 1.62    | 1.63    | 1.62    | 1.66    | 1.71    | 1.72    | 1.72    | 1.75    | 1%   |
| Agricultural Soil Management                           | 3.77    | 3.79    | 4.00    | 3.81    | 3.80    | 3.56    | 3.24    | 3.58    | 3.74    | 3.75    | 3.94    | 3.45    | 3.51    | 3.38    | 2%   |
| Rice Cultivation                                       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | 0%   |
| Liming                                                 | 0.03    | 0.12    | 0.10    | -       | -       | 0.03    | 0.05    | -       | -       | -       | -       | -       | -       | -       | 0%   |
| Urea                                                   | 0.01    | 0.01    | 0.02    | 0.02    | 0.04    | 0.04    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0%   |
| Burning of Agricultural Crop Waste                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0%   |
| LULUCF                                                 | (48.77) | (49.14) | (49.37) | (49.65) | (49.93) | (50.71) | (51.63) | (52.49) | (53.13) | (53.88) | (53.17) | (52.59) | (51.89) | (51.19) | -33% |
| Waste                                                  | 5.92    | 5.26    | 5.26    | 5.32    | 5.73    | 5.05    | 4.72    | 3.82    | 3.90    | 4.11    | 3.79    | 3.83    | 3.84    | 2.68    | 2%   |
| Municipal Solid Waste                                  | 4.91    | 4.22    | 4.20    | 4.25    | 4.65    | 3.98    | 3.65    | 2.74    | 2.81    | 3.00    | 2.67    | 2.70    | 2.69    | 1.52    | 1%   |
| Wastewater                                             | 1.01    | 1.04    | 1.06    | 1.07    | 1.08    | 1.07    | 1.07    | 1.09    | 1.10    | 1.11    | 1.12    | 1.14    | 1.15    | 1.16    | 1%   |
| Indirect CO <sub>2</sub> from Electricity Consumption* | 89.93   | 91.95   | 94.02   | 88.30   | 81.42   | 87.56   | 79.49   | 70.98   | 69.78   | 71.67   | 68.36   | 66.08   | 61.29   | 61.80   | 40%  |
| Gross Emissions                                        | 209.40  | 206.42  | 209.20  | 195.46  | 186.29  | 194.69  | 178.50  | 157.73  | 155.99  | 161.09  | 158.66  | 158.10  | 156.27  | 154.42  |      |
| Sinks                                                  | (48.77) | (49.14) | (49.37) | (49.65) | (49.93) | (50.71) | (51.63) | (52.49) | (53.13) | (53.88) | (53.17) | (52.59) | (51.89) | (51.19) | -33% |
| Net Emissions                                          | 160.63  | 157.27  | 159.83  | 145.81  | 136.36  | 143.98  | 126.87  | 105.24  | 102.86  | 107.21  | 105.49  | 105.51  | 104.38  | 103.23  |      |

## EPA SIT Land Use, Land Change, Forestry (LULCF) major categories in MMTCO<sub>2</sub>e



## EPA State Inventory Tool

## Land Use, Land Use Change, Forestry

| Emissions* (MMTCO2E)                      |         |         |         |         |         |
|-------------------------------------------|---------|---------|---------|---------|---------|
|                                           | 2005    | 2010    | 2016    | 2017    | 2018    |
| Net Forest Carbon Flux                    | (42.31) | (43.67) | (44.72) | (43.91) | (43.11) |
| Forest Land Remaining Forest Land         | (46.83) | (48.47) | (49.91) | (49.10) | (48.30) |
| Aboveground Biomass                       | (24.10) | (24.69) | (25.08) | (24.47) | (23.87) |
| Belowground Biomass                       | (4.92)  | (4.99)  | (5.01)  | (4.88)  | (4.75)  |
| Deadwood                                  | 1.05    | 0.57    | 0.05    | 0.07    | 0.09    |
| Litter                                    | (0.79)  | (0.77)  | (0.69)  | (0.64)  | (0.60)  |
| Soil (Mineral)                            | 1.46    | 0.87    | 0.23    | 0.24    | 0.26    |
| Soil (Organic)                            | (0.08)  | (0.01)  | 0.03    | 0.02    | 0.02    |
| Drained Organic Soil                      | 0.04    | 0.04    | 0.04    | 0.04    | 0.04    |
| Total wood products and landfills         | (19.48) | (19.48) | (19.48) | (19.48) | (19.48) |
| Land Converted to Forest Land             | (3.28)  | (3.25)  | (3.22)  | (3.22)  | (3.22)  |
| Aboveground Biomass                       | (2.12)  | (2.10)  | (2.08)  | (2.08)  | (2.08)  |
| Belowground Biomass                       | (0.40)  | (0.40)  | (0.39)  | (0.39)  | (0.39)  |
| Deadwood                                  | (0.16)  | (0.16)  | (0.16)  | (0.16)  | (0.16)  |
| Litter                                    | (0.58)  | (0.58)  | (0.57)  | (0.57)  | (0.57)  |
| Soil (Mineral)                            | (0.02)  | (0.02)  | (0.02)  | (0.02)  | (0.02)  |
| Forest Land Converted to Land             | 7.80    | 8.06    | 8.41    | 8.41    | 8.41    |
| Aboveground Biomass                       | 5.30    | 5.48    | 5.71    | 5.71    | 5.71    |
| Belowground Biomass                       | 1.05    | 1.09    | 1.13    | 1.13    | 1.13    |
| Deadwood                                  | 0.32    | 0.33    | 0.34    | 0.34    | 0.34    |
| Litter                                    | 1.03    | 1.07    | 1.11    | 1.11    | 1.11    |
| Soil (Mineral)                            | 0.10    | 0.10    | 0.11    | 0.11    | 0.11    |
| Urban Trees                               | (5.73)  | (6.44)  | (7.28)  | (7.43)  | (7.57)  |
| Landfilled Yard Trimmings and Food Scraps | -       | -       | -       | -       | -       |
| Grass                                     | -       | -       | -       | -       | -       |
| Leaves                                    | -       | -       | -       | -       | -       |
| Branches                                  | -       | -       | -       | -       | -       |
| Landfilled Food Scraps                    | -       | -       | -       | -       | -       |
| Forest Fires                              | -       | -       | -       | -       | -       |
| CH4                                       | -       | -       | -       | -       | -       |
| N2O                                       | -       | -       | -       | -       | -       |
| N2O from Settlement Soils                 | -       | -       | -       | -       | -       |
| Agricultural Soil Carbon Flux             | (0.46)  | (0.29)  | (0.32)  | (0.31)  | (0.27)  |
| Total                                     | (48.51) | (50.39) | (52.32) | (51.65) | (50.95) |

Georgia SIT harvested wood products in use and sequestered in land fills

- US 2019 total: 108.5 MMT
- Georgia SIT annual totals 1994-2018: 19.48 MMT
- If the Georgia SIT is correct, Georgia is sequestering 18% of US total harvested wood products, with about 3% of the US population
- Experts in an earlier session recommended omitting this category due to uncertainty and unavailability of reasonable substitute values

## NLCD Forest Totals by County

|          |         |           |           |        |          | Non-    |            |           |           |        |          | Non-    |            |           |           |        |          | Non-    |            |        |
|----------|---------|-----------|-----------|--------|----------|---------|------------|-----------|-----------|--------|----------|---------|------------|-----------|-----------|--------|----------|---------|------------|--------|
|          |         | Deciduous | Evergreen | Mixed  | Woody    | wetland |            | Deciduous | Evergreen | Mixed  | Woody    | wetland |            | Deciduous | Evergreen | Mixed  | Woody    | wetland |            |        |
|          |         | Forest    | Forest    | Forest | Wetlands | Forest  | All Forest | Forest    | Forest    | Forest | Wetlands | Forest  | All Forest | Forest    | Forest    | Forest | Wetlands | Forest  | All Forest | Square |
| COUNTY   | Acres   | 2000      | 2000      | 2000   | 2000     | 2000    | 2000       | 2011      | 2011      | 2011   | 2011     | 2011    | 2011       | 2016      | 2016      | 2016   | 2016     | 2016    | 2016       | Miles  |
| Appling  | 328,027 | 1,686     | 94,684    | 3,933  | 94,916   | 100,304 | 195,220    | 1,403     | 91,944    | 3,562  | 89,603   | 96,908  | 186,511    | 1,084     | 85,222    | 3,119  | 91,312   | 89,425  | 180,738    | 512.54 |
| Atkinson | 220,550 | 1,302     | 72,091    | 2,357  | 67,065   | 75,750  | 142,816    | 1,173     | 74,499    | 1,830  | 65,340   | 77,502  | 142,842    | 967       | 71,801    | 1,539  | 66,463   | 74,306  | 140,769    | 344.61 |
| Bacon    | 182,977 | 611       | 53,620    | 1,031  | 50,737   | 55,261  | 105,998    | 509       | 46,773    | 876    | 48,993   | 48,157  | 97,150     | 407       | 42,121    | 790    | 49,214   | 43,317  | 92,532     | 285.90 |
| Baker    | 223,242 | 5,649     | 51,744    | 9,840  | 35,972   | 67,232  | 103,204    | 5,119     | 52,177    | 9,773  | 35,885   | 67,069  | 102,953    | 4,989     | 52,555    | 9,793  | 35,470   | 67,338  | 102,808    | 348.82 |
| Baldwin  | 171,703 | 38,024    | 40,594    | 19,023 | 11,706   | 97,641  | 109,346    | 37,137    | 42,508    | 20,200 | 11,762   | 99,845  | 111,607    | 35,474    | 43,918    | 20,526 | 11,535   | 99,918  | 111,453    | 268.29 |
| Banks    | 149,684 | 72,180    | 6,904     | 11,797 | 4,426    | 90,881  | 95,306     | 67,682    | 7,279     | 12,993 | 4,301    | 87,954  | 92,255     | 68,275    | 7,331     | 13,615 | 4,434    | 89,220  | 93,654     | 233.88 |
| Barrow   | 104,266 | 30,118    | 8,464     | 8,215  | 3,129    | 46,797  | 49,926     | 26,753    | 7,738     | 8,652  | 3,038    | 43,143  | 46,181     | 27,217    | 7,851     | 8,922  | 3,060    | 43,989  | 47,050     | 162.91 |
| Bartow   | 300,837 | 85,168    | 54,212    | 27,728 | 841      | 167,108 | 167,949    | 76,639    | 51,624    | 27,583 | 768      | 155,846 | 156,614    | 76,835    | 53,442    | 28,472 | 756      | 158,749 | 159,505    | 470.06 |
| Ben Hill | 162,501 | 2,343     | 57,668    | 3,702  | 32,614   | 63,713  | 96,326     | 2,270     | 61,862    | 3,597  | 32,665   | 67,730  | 100,395    | 1,951     | 56,321    | 3,322  | 32,503   | 61,593  | 94,096     | 253.91 |
| Berrien  | 293,055 | 1,796     | 83,649    | 4,099  | 81,176   | 89,544  | 170,720    | 1,725     | 85,836    | 3,934  | 81,001   | 91,494  | 172,495    | 1,659     | 82,373    | 3,669  | 80,945   | 87,701  | 168,646    | 457.90 |
| Bibb     | 163,448 | 21,764    | 17,080    | 23,063 | 23,280   | 61,906  | 85,187     | 18,274    | 16,065    | 22,601 | 23,171   | 56,940  | 80,110     | 18,428    | 17,128    | 23,019 | 23,512   | 58,575  | 82,087     | 255.39 |
| Bleckley | 140,238 | 6,283     | 31,192    | 10,387 | 23,439   | 47,863  | 71,303     | 5,259     | 30,068    | 9,421  | 23,191   | 44,747  | 67,938     | 4,971     | 30,840    | 9,477  | 23,449   | 45,289  | 68,737     | 219.12 |
| Brantley | 286,511 | 122       | 105,503   | 273    | 111,557  | 105,898 | 217,454    | 189       | 84,285    | 127    | 109,293  | 84,600  | 193,893    | 222       | 72,684    | 83     | 111,863  | 72,988  | 184,851    | 447.67 |
| Brooks   | 318,554 | 3,534     | 80,412    | 14,501 | 76,565   | 98,446  | 175,011    | 3,197     | 81,683    | 13,549 | 77,226   | 98,429  | 175,655    | 2,933     | 79,508    | 13,219 | 77,358   | 95,660  | 173,018    | 497.74 |
| Bryan    | 291,266 | 540       | 112,638   | 2,431  | 95,289   | 115,609 | 210,898    | 491       | 110,326   | 2,011  | 95,327   | 112,829 | 208,155    | 469       | 105,024   | 1,612  | 95,856   | 107,105 | 202,961    | 455.10 |
| Bulloch  | 441,196 | 2,427     | 75,402    | 5,676  | 147,359  | 83,504  | 230,864    | 2,406     | 81,330    | 5,091  | 145,979  | 88,827  | 234,806    | 2,157     | 77,574    | 4,628  | 146,529  | 84,358  | 230,887    | 689.37 |
| Burke    | 534,000 | 34,811    | 103,084   | 6,587  | 146,332  | 144,482 | 290,814    | 36,446    | 100,322   | 6,070  | 145,435  | 142,838 | 288,273    | 39,009    | 92,067    | 5,714  | 145,233  | 136,790 | 282,023    | 834.37 |
| Butts    | 120,326 | 34,483    | 32,155    | 7,940  | 4,706    | 74,578  | 79,284     | 33,449    | 31,364    | 8,774  | 4,412    | 73,587  | 77,999     | 34,191    | 31,625    | 8,943  | 4,518    | 74,759  | 79,277     | 188.01 |
| Calhoun  | 181,777 | 5,789     | 26,281    | 9,440  | 51,569   | 41,511  | 93,079     | 5,226     | 28,226    | 9,328  | 51,737   | 42,780  | 94,516     | 5,009     | 27,771    | 9,291  | 51,554   | 42,070  | 93,624     | 284.03 |
| Camden   | 501,016 | 2,598     | 142,536   | 254    | 122,720  | 145,389 | 268,109    | 3,037     | 139,720   | 191    | 122,311  | 142,948 | 265,259    | 3,173     | 134,097   | 160    | 122,830  | 137,430 | 260,259    | 782.84 |
| Candler  | 159,389 | 945       | 34,240    | 2,695  | 45,029   | 37,881  | 82,910     | 956       | 34,646    | 2,640  | 44,771   | 38,242  | 83,013     | 861       | 33,356    | 2,546  | 44,571   | 36,763  | 81,334     | 249.05 |

National Land Cover Database for Georgia

Four forest categories

|                              | 2000       | 2011       | 2016             |
|------------------------------|------------|------------|------------------|
| Class                        | Acres      | Acres      | Acres            |
| Open Water                   | 1,050,574  | 1,050,929  | 1,060,373        |
| Developed, Open Space        | 1,986,056  | 2,126,078  | 2,127,867        |
| Developed, Low Intensity     | 943,459    | 1,050,108  | 1,067,677        |
| Developed, Medium intensity  | 244,865    | 327,416    | 346 <i>,</i> 458 |
| Developed, High Intensity    | 120,131    | 152,025    | 159,294          |
| Barren Land (Rock/sand/clay) | 108,446    | 97,624     | 96,830           |
| Deciduous Forest             | 5,354,596  | 5,030,301  | 5,007,394        |
| Evergreen Forest             | 9,113,839  | 9,027,059  | 8,869,614        |
| Mixed Forest                 | 2,506,163  | 2,520,095  | 2,535,707        |
| Shrub/Scrub                  | 966,344    | 1,283,361  | 1,305,342        |
| Grassland/Herbaceous         | 1,699,585  | 1,733,657  | 1,761,765        |
| Pasture/Hay                  | 2,865,822  | 2,627,972  | 2,634,059        |
| Cultivated Crops             | 4,499,754  | 4,437,127  | 4,495,167        |
| Woody Wetlands               | 5,977,217  | 5,900,898  | 5,957,339        |
| Emergent Herbaceous Wetlands | 600,522    | 672,752    | 612,572          |
|                              | 38,037,374 | 38,037,402 | 38,037,458       |



#### DAAC Home > Get Data > NASA Projects > Carbon Monitoring System (CMS) > User guide

#### CMS: Forest Carbon Stocks, Emissions, and Net Flux for the Conterminous US: 2005-2010

#### Get Data

Documentation Revision Date: 2016-05-31

Data Set Version: V1

#### Summary

This data set provides maps of estimated carbon in forests of the 48 continental states of the US for the years 2005-2010. Carbon (termed committed carbon) stocks were estimated for forest aboveground biomass, belowground biomass, standing dead stems, and litter for the year 2005. Carbon emissions were estimated from land use conversion to agriculture, insect damage, logging, wind, and weather events in the forests for the years 2006 - 2010. Committed net carbon flux was estimated as the sum of carbon emissions and sequestration. The maps are provided at 100-m spatial resolution in GeoTIFF format. Average annual carbon estimates, by US county, for (1) emissions for the multiple disturbance sources, (2) sequestration, and (3) the committed net carbon flux are provided in an ESRI shapefile.

Data sources included forest carbon stock maps, tree cover change data, Forest Inventory and Analysis Database (FIA) plot data, biomass derived from Geoscience Laser Altimeter System (GLAS) data, and auxiliary spatial data sets collected by various US agencies on types of forest disturbances. The data were integrated into a synthesis framework to attribute changes in forest carbon stocks to specific disturbances in the forests and to estimate the spatial distribution of carbon emissions and removals across US forest lands.

Committed net carbon flux was estimated as the sum of gross committed carbon emissions and carbon sequestration. This committed net carbon flux includes future emissions from decomposing plant matter killed during disturbances occurring between 2006 and 2010 and does not include the same type of flux resulting from disturbances occurring before 2006.

Hagen, S., N. Harris, S.S. Saatchi, T. Pearson, C.W. Woodall, S. Ganguly, G.M. Domke, B.H. Braswell, B.F. Walters, J.C. Jenkins, S. Brown, W.A. Salas, A. Fore, Y. Yu, R.R. Nemani, C. Ipsan, and K.R. Brown. 2016. CMS: Forest Carbon Stocks, Emissions, and Net Flux for the Conterminous US: 2005-2010. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1313



## Forestry calculations





2018 Monthly Forest Uptake in Metric Tons of CO<sub>2</sub>

# Agriculture sector emissions

## Agriculture data sources

- 1. EPA State Inventory Tool (SIT) for statewide agriculture emissions in three categories:
  - a. Agricultural soil management (ASM)
  - b. Enteric fermentation (EF)
  - c. Manure management (MM)
- 2. NOAA 1990-2020 station-level climatology with number of growing degree days (GGDs) between 50 and 86 degrees F
- 3. US Department of Agriculture (USDOA) Census of Agriculture data for 2002, 2007, 2012, and 2017 for area of harvested cropland and animal inventory counts by county
- 4. US Department of Agriculture "Animal Feeding Operations" webpage on animal unit definitions
- 5. US Department of Agriculture "Agricultural Waste Management Field Handbook" on manure generation values by animal unit

## Agriculture basic strategy

- 1. Download USDOA Census county-level values for harvested cropland, layer chickens, broiler chickens, dairy cattle, beef cattle, and hogs; interpolate annual values between Census years
- 2. Calculate county annual shares of cropland; distribute to months based on GDDs for <u>ASM shares</u>
- 3. Calculate each county's share of cattle for <u>EF shares</u>
- 4. Divide animal inventory counts by animal unit factors, multiply times manure generation factor, sum across animal types, calculate county shares of statewide manure for <u>MM shares</u>
- 5. Read SIT values for three agricultural emissions categories (ASM, EF, and MM), use 2009-2018 linear trend to forecast 2019-2021 values
- 6. Multiply SIT statewide ASM, EF, and MM values by shares of cropland, cattle, and manure generated; add county emissions from agricultural distillate fuel for total county agriculture sector emissions

## EPA State Inventory Tool for Georgia Agriculture and Forestry Emissions and Uptake in MMTCO<sub>2</sub>e

| Emissions by Sector                                    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |      |
|--------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|
| Energy                                                 | 191.21  | 188.49  | 190.81  | 176.97  | 167.23  | 176.31  | 160.59  | 140.25  | 138.24  | 142.76  | 140.30  | 140.12  | 138.15  | 137.54  | 89%  |
| CO2 from Fossil Fuel Combustion                        | 186.77  | 184.32  | 186.86  | 173.34  | 163.85  | 172.97  | 157.47  | 137.36  | 135.39  | 139.91  | 137.60  | 137.42  | 135.57  | 134.96  | 87%  |
| Stationary Combustion                                  | 0.88    | 0.88    | 0.89    | 0.81    | 0.77    | 0.85    | 0.78    | 0.66    | 0.71    | 0.77    | 0.66    | 0.67    | 0.61    | 0.62    | 0%   |
| Mobile Combustion                                      | 2.11    | 1.86    | 1.62    | 1.38    | 1.18    | 1.05    | 0.90    | 0.79    | 0.70    | 0.64    | 0.60    | 0.59    | 0.53    | 0.52    | 0%   |
| Coal Mining                                            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | 0%   |
| Natural Gas and Oil Systems                            | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1.44    | 1%   |
| Industrial Processes                                   | 4.66    | 4.98    | 5.20    | 5.65    | 5.92    | 6.20    | 6.38    | 6.51    | 6.59    | 6.88    | 7.00    | 6.96    | 7.03    | 7.13    | 5%   |
| Agriculture                                            | 7.62    | 7.69    | 7.93    | 7.52    | 7.40    | 7.13    | 6.80    | 7.15    | 7.26    | 7.35    | 7.57    | 7.19    | 7.25    | 7.07    | 5%   |
| Enteric Fermentation                                   | 2.15    | 2.11    | 2.10    | 2.02    | 1.97    | 1.92    | 1.87    | 1.90    | 1.86    | 1.90    | 1.89    | 1.99    | 1.99    | 1.92    | 1%   |
| Manure Management                                      | 1.67    | 1.65    | 1.71    | 1.67    | 1.60    | 1.58    | 1.62    | 1.63    | 1.62    | 1.66    | 1.71    | 1.72    | 1.72    | 1.75    | 1%   |
| Agricultural Soil Management                           | 3.77    | 3.79    | 4.00    | 3.81    | 3.80    | 3.56    | 3.24    | 3.58    | 3.74    | 3.75    | 3.94    | 3.45    | 3.51    | 3.38    | 2%   |
| Rice Cultivation                                       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | 0%   |
| Liming                                                 | 0.03    | 0.12    | 0.10    | -       | -       | 0.03    | 0.05    | -       | -       | -       | -       | -       | -       | -       | 0%   |
| Urea                                                   | 0.01    | 0.01    | 0.02    | 0.02    | 0.04    | 0.04    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0.03    | 0%   |
| Burning of Agricultural Crop Waste                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0%   |
| LULUCF                                                 | (48.77) | (49.14) | (49.37) | (49.65) | (49.93) | (50.71) | (51.63) | (52.49) | (53.13) | (53.88) | (53.17) | (52.59) | (51.89) | (51.19) | -33% |
| Waste                                                  | 5.92    | 5.26    | 5.26    | 5.32    | 5.73    | 5.05    | 4.72    | 3.82    | 3.90    | 4.11    | 3.79    | 3.83    | 3.84    | 2.68    | 2%   |
| Municipal Solid Waste                                  | 4.91    | 4.22    | 4.20    | 4.25    | 4.65    | 3.98    | 3.65    | 2.74    | 2.81    | 3.00    | 2.67    | 2.70    | 2.69    | 1.52    | 1%   |
| Wastewater                                             | 1.01    | 1.04    | 1.06    | 1.07    | 1.08    | 1.07    | 1.07    | 1.09    | 1.10    | 1.11    | 1.12    | 1.14    | 1.15    | 1.16    | 1%   |
| Indirect CO <sub>2</sub> from Electricity Consumption* | 89.93   | 91.95   | 94.02   | 88.30   | 81.42   | 87.56   | 79.49   | 70.98   | 69.78   | 71.67   | 68.36   | 66.08   | 61.29   | 61.80   | 40%  |
| Gross Emissions                                        | 209.40  | 206.42  | 209.20  | 195.46  | 186.29  | 194.69  | 178.50  | 157.73  | 155.99  | 161.09  | 158.66  | 158,10  | 156.27  | 154.42  |      |
| Sinks                                                  | (48.77) | (49.14) | (49.37) | (49.65) | (49.93) | (50.71) | (51.63) | (52.49) | (53.13) | (53.88) | (53.17) | (52.59) | (51.89) | (51.19) | -33% |
| Net Emissions                                          | 160.63  | 157.27  | 159.83  | 145.81  | 136.36  | 143.98  | 126.87  | 105.24  | 102.86  | 107.21  | 105.49  | 105.51  | 104.38  | 103.23  |      |

### USDA animal units

• An animal unit is defined as an animal equivalent of 1000 pounds live weight and equates to

1000 head of beef cattle,700 dairy cows,2500 swine weighing more than 55 lbs,125 thousand broiler chickens, or82 thousand laying hens or pullets

## USDA manure generation by livestock type

| Livestock type             | Total m | anure | Nitrogen                  | Phospho | rus |
|----------------------------|---------|-------|---------------------------|---------|-----|
|                            |         | Ib    | s/day/1000-lb animal unit |         |     |
| Beef <sup>1</sup>          | 59.     | 1     | 0.31                      | 0.11    |     |
| Dairy <sup>2</sup>         | 80.     | 0     | 0.45                      | 0.07    |     |
| Hogs and pigs <sup>3</sup> | 63.     | 1     | 0.42                      | 0.16    |     |
| Chickens (layers)          | 60.     | 5     | 0.83                      | 0.31    |     |
| Chickens (broilers)        | 80.     | 0     | 1.10                      | 0.34    |     |
| Turkeys                    | 43.     | 6     | 0.74                      | 0.28    |     |

<sup>1</sup>High forage diet. <sup>2</sup>Lactating cow. <sup>3</sup>Grower.

Source: USDA Natural Resources Conservation Service. Agricultural Waste Management Handbook (1992)

## Georgia Diesel Fuel Consumption by Sector









Total 2018 agricultural soil management emissions in metric tons of  $CO_2e$ 



Total 2018 manure management emissions in metric tons of  $CO_2e$ 



Total 2018 enteric fermentation emissions in metric tons of  $CO_2e$ 



Total 2018 agricultural emissions in metric tons of CO<sub>2</sub>e



Agriculture and forestry sectors discussion and questions

## Possible discussion questions

- Are there better data sources for state-level forest emissions/uptake than the State Inventory Tool, and for 2005-present local-level forest land cover than the NLCD?
- Can you recommend a published or standard source for CO<sub>2</sub> per acre forest uptake factors for the Georgia NLCD forest categories: deciduous, evergreen, mixed, and woody wetlands?
- How should we handle the county locations for harvested wood products and landfill wood products (38% of total Georgia LULUCF flux)?
- Are there more direct (and less complex) ways to calculate county manure management values?
- Are the **SIT** overall agricultural values reasonable?



## **THANKS!**

For more information: Ollie Chapman at ochapman3@gatech.edu

To see all of four dashboard presentations, go here:

- https://cepl.gatech.edu/dashboardseminars
- For more about Drawdown Georgia:
- www.drawdownga.org

For more about Drawdown Georgia research program:

https://cepl.gatech.edu/projects/Drawdown-Georgia

