Energy Efficient Light Duty Vehicles

The Drawdown Georgia team broadly defines this solution
set to include technologies that contribute to improved
energy efficiency in light duty vehicles (LDVs), such as cars
and pickups. A range of relatively mature and cost-effective
technologies are available to reduce or replace petroleum
fuel use in LDVs.

This solution primarily includes technologies that reduce
conventional fuel use (such as turbochargers and hybrid
powertrains). To a lesser degree, additional technologies are
considered that replace fuel with alternative energy sources
(such as CNG). Electric Vehicles are addressed separately in
Drawdown Georgia as a stand alone solution. The trajectory
and quantity of CO2 reductions for conventional energy
efficiency technologies is similar to EVs, and the two
solutions can be complementary.
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You SQAVE

$1,850

in fuel costs
over 5 years
compared to the
average new vehicle.




Energy Efficiency Light Duty Vehicles

Energy Efficient passenger cars and trucks are on steadily declining CO, trajectory to 2030
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Dramatic Progress in LDV Energy Efficiency since 2010

Figure 2.1. Estimated Real-World Fuel
Economy and COz Emissions
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Driven by Aggressive Federal
Corporate Average Fuel Economy
(CAFE) regulations, Fleet Fuel
Economy has increased more than
25% in the past decade.

A range of affordable technologies
has underpinned this progress.

With the latest extension of CAFE
regulations, conventional vehicles
are required to continue
improving at 1.5% y/y through
2025

Thus, the GA 2030 baseline for
LDVs will be more than 5Mt (13%)
lower than 2020 levels.

https://www.epa.gov/automotive-trends/download-automotive-trends-report#Full%20Report

Figure 4.3. Production Share by Engine Technology
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https://www.epa.gov/automotive-trends/download-automotive-trends-report#Full%20Report

Near-linear correlation between CO2 and vehicle size:

Implications for Georgia

Figure 3.14. Relationship of Footprint and CO: Emissions
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https://www.epa.gov/automotive-trends/download-automotive-trends-report#Full%20Report

Naturally, CO2 emissions are (nearly linearly)
correlated to vehicle size and weight.

In Georgia, the share of the LDV fleet that is
comprised of larger vehicles (light trucks and SUVs)
is about 60% compared to a national average share
of about 45%.

This results in a disproportionate level of emissions
from these larger passenger vehicle classifications.

On the plus side, new fuel-saving technologies are
now penetrating larger vehicles, and can
contribute to substantial CO2 reductions over the
coming decade.

Nonetheless, vehicle fleet mix will remain a critical
parameter in Georgia that has implications about
behavior, consumer choice, and use.



https://www.epa.gov/automotive-trends/download-automotive-trends-report#Full%20Report

Future CO2 trends for new LDVs, through 2030

* Achievable solution corresponds to an equivalent CO2 intensity of:
* 136gC02/km for new MY2030 cars and
* 190gC02/km for new MY2030 SUVs and pickups

Projections of CO2 intensity of New Passenger Cars in GA, through the 2030 Model Year
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However, since vehicles are in the fleet an average of 16 years, annual turnover is only about 6% per year,
meaning change happens slowly, in spite of rapid penetration of highly efficient new models.

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2020




Benefits and Costs of Fuel-Saving LDV Technologies
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Simmons, Richard A., et al. "A benefit-cost assessment of new vehicle technologies and fuel
economy in the US market." Applied energy 157 (2015): 940-952.

Under current assumptions for fuel price,
vehicle miles traveled, and interest rates,
today’s consumers are unlikely to see a
compelling payback on fuel efficiency
technologies, on their own merit. In other
words, fuel savings over time are currently
less than upfront technology costs.

However, many new technologies provide
additional performance benefits (e.g.,
acceleration, torque from rest, reduced
maintenance), and can compel buyers to
invest in higher efficiency.

Progress toward 2030 targets will depend
on several unknown variables

e Cost of conventional fuel

e Penetration into trucks and SUVs

e Future CAFE regulations




Benefits and Costs associated with Fuel-Saving Technologies in LDVs
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Simmons, Richard A., et al. "A benefit-cost assessment of new vehicle technologies and fuel
economy in the US market." Applied energy 157 (2015): 940-952.

This plot shows where key fuel efficiency
technologies lie on a benefit/cost spectrum.

Technologies that lie below the breakeven
(B/C=1) line will provide a positive economic
return to consumers. For prolonged
adoption of more energy efficient cars,
consumers will need to reconcile costs,
and/or be motivated by other factors.

Financial viability and progress toward 2030
targets deriving from energy efficiency
investments in conventional vehicles will
depend on several unknown variables

Cost of conventional fuel

Penetration into trucks and SUVs
Future CAFE regulations

Attractiveness of alternatives (e.g., EVs)
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Beyond Carbon for Energy Efficient LDVs: Glimpse into Air Quality Changes

NOX 2020 2030 2030 2030Net Change Net Change
Electricity
Tailpipe Sector
Emissions |Increase Total T/yr %
Baseline Total NOx Emissions, Ga LDV Fleet [Ton 10005 4175 124 4299BASELINE BASELINE
NOXx Intensity, GA LDV Fleet Avg gNOx/mi 0.099 0.040 0.0405
Achievable [Total NOx Emissions, Ga LDV Fleet [Ton 3969 124 4093 -206 -4.8%
NOXx Intensity, GA LDV Fleet Avg gNOX/mi 0.0384
Technical (Total NOx Emissions, Ga LDV Fleet [Ton 3674 124 3798 -502 -11.7%
NOXx Intensity, GA LDV Fleet Avg gNOX/mi 0.0374

A few key takeaways, based on the change in NOx tailpipe emissions for new LDVs:
e Baseline is headliner: NOx emissions for new cars will decline by more than half in the coming decade
 With minimal new adoption of EVs, energy efficient cars and trucks can contribute an additional 5-12%
reduction in tailpipe NOx relative to the 2030 baseline.
e Other tailpipe emissions reductions (except PM) have similar trajectories as they are loosely proportional
to CO2.

R. Simmons, Strategic Energy Institute, Georgia Institute of Technology, 2020




Stakeholder Analysis of Energy Efficient LDVs

Automotive Suppliers (Engines, Controls, Hybrids)

Selected Auto OEMs, and Car Dealers
Environmental and Clean Energy NGOs

Low-Moderate Income
Households

Air Quality Advocates

\Potential Champions

Customers

Government Agencies

State DOT/Gasoline Tax Revenue

Electric Vehicle OEMs and Suppliers
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