

DRAWDOWN

www.DrawdownGA.org

The Science Behind Drawdown Georgia: Reducing Georgia's Carbon Footprint in Beneficial and Equitable Ways October 21, 2020

INTRO & OVERVIEW

Opening Remarks John Lanier, Ray C. Anderson Foundation

Overview Daniel Rochberg, Emory Marilyn Brown, Georgia Tech

METHODS & FINDINGS

Electricity Marilyn Brown, Georgia Tech

Transportation Mike Rodgers, Georgia Tech

Buildings & Materials Dan Matisoff, Georgia Tech

Food & Agriculture Sudhagar Mani, UGA Land Sinks Jackie Mohan, UGA

Beyond Carbon Michael Oxman, Georgia Tech

NEXT STEPS

Next Steps Marilyn Brown, Georgia Tech

Q & A Kim Cobb, Georgia Tech Blair Beasley, Emory Marshall Shepherd, UGA

INTRO & OVERVIEW

Opening Remarks John Lanier, Ray C. Anderson Foundation

Overview Daniel Rochberg, Emory Marilyn Brown, Georgia Tech **METHODS & FINDINGS**

Electricity Marilyn Brown, Georgia Tech Transportation Mike Rodgers, Georgia Tech

Buildings & Materials Dan Matisoff, Georgia Tech

Food & Agriculture Sudhagar Mani, UGA Land Sinks Jackie Mohan, UGA Beyond Carbon Michael Oxman, Georgia Tech

NEXT STEPS

Next Steps Marilyn Brown, Georgia Tech

Q & A Kim Cobb, Georgia Tech Blair Beasley, Emory Marshall Shepherd, UGA Climate change presents real risks to Georgia and the rest of the world.

Tackling those risks head-on presents real opportunities.

Addressing climate change at scale will require creativity and innovation.

Project Drawdown pioneered this type of new thinking at the global level.

Drawdown Georgia brings a Georgia lens to this analysis.

DRAWDOWN

bringing climate solutions home

Drawdown Georgia Builds on a History of Multi-University Collaboration on Climate Change

What does a changing climate mean for Georgia?

What can we do about it?

We are building a state-wide network to address these questions.

Drawdown Georgia Research Methodology and Overview of Findings

Starting Point: Project Drawdown Solutions

PROJECT \equiv

ELECTRICITY GENERATION FOOD

Biomass Cogeneration Concentrated Solar Energy Storage (Distributed) Energy Storage (Utilities) Geothermal Grid Flexibility In-Stream Hydro Methane Digesters (Large) Methane Digesters (Small) Micro Wind Microgrids Nuclear Rooftop Solar Solar Farms Solar Water Waste-to-Energy Wave and Tidal Wind Turbines (Offshore) Wind Turbines (Onshore)

Biochar Clean Cookstoves Composting Conservation Agriculture Farmland Irrigation Farmland Restoration Improved Rice Cultivation Managed Grazing Multistrata Agroforestry Nutrient Management Plant-Rich Diet Reduced Food Waste Regenerative Agriculture Silvopasture System of Rice Intensification Tree Intercropping

WOMEN AND GIRLS Educating Girls Family Planning

Tropical Staple Trees

Women Smallholders

LED Lighting (Commercial) LED Lighting (Household) Net Zero Buildings Retrofitting Smart Glass

BUILDINGS AND CITIES

Bike Infrastructure

District Heating

Green Roofs

Heat Pumps

Landfill Methane

Insulation

Building Automation

Smart Thermostats Walkable Cities Water Distribution

LAND USE

Afforestation Bamboo Coastal Wetlands Forest Protection Indigenous Peoples' Land Management Peatlands Perennial Biomass Temperate Forests

Tropical Forests

TRANSPORT Airplanes Cars

¥ in f ∅

Electric Bikes Electric Vehicles High-speed Rail Mass Transit Ridesharing Ships

Telepresence Trains Trucks

MATERIALS

Alternative Cement Bioplastic Household Recycling Industrial Recycling **Recycled Paper** Refrigerant Management Water Saving - Home

Autonomous Vehicles Building With Wood Direct Air Capture Enhanced Weathering of Minerals Hydrogen-Boron Fusion Hyperloop Industrial Hemp Intensive Silvopasture Living Buildings Marine Permaculture Microbial Farming Ocean Farming Pasture Cropping Perennial Crops Repopulating the Mammoth Steppe Smart Grids Smart Highways Solid-state Wave Energy

COMING ATTRACTIONS

Artificial Leaf

A Cow Walks Onto A Beach

O

Which are best for Georgia?

Paul Hawken an environmentalist, entrepreneur, journalist, and author pioneer in sustainability

First we needed to listen and learn from numerous and diverse stakeholders—be inclusive and permeable

We designed a downselect system:

- Is the solution technology & market ready for Georgia?
- Is there sufficient local experience and available data?
- Can the solution reduce 1 MTCO₂e annually by 2030?
- Is the solution costcompetitive?
- What are the "beyond carbon" issues?

9

20 Drawdown Georgia Solutions for 2030

Electricity

Demand Response

Cogeneration

 \mathbb{H} Large-Scale Solar

Landfill Methane

Transportation

- þ **Electric Vehicles**
- **Energy-Efficient Cars**
- **Energy-Efficient Trucks** G

Ð Mass Transit

Alternative Mobility 50

Land Sinks

Afforestation & Silvopasture

Coastal Wetlands φQφ

Temperate Forest Protection & Management

Food & Agriculture

Conservation Agriculture

Ż

<u>کالا</u>

Plant Rich Diet

Reduced Food Waste

Buildings & Materials

Recycling

Refrigerant Management

bringing climate solutions home

What does 1 megaton of carbon reduction look like?

Rooftop Solar: 295,000 new 5 KW home solar systems by 2030

Composting: Divert ~2 million tons of organic waste from landfilling to composting by 2030

Alternative mobility: Eliminate 2.5% of car trips

Drawdown Scenarios of the 20 High-Impact Solutions

Technical Potential: Maximum realistic application without regard to cost or other impacts, up to hard limits on resources such as available land and materials.

Recycling 95% of disposed recyclable materials

Covering 100% of south-facing + flat rooftops with solar panels.

Achievable Potential: A realistic scenario that considers costs, impacts, and stakeholder acceptance, but consistent with a greater commitment to success.

EVs are 15% of new sales by 2030

Growing large-scale solar from 1 to 11% of electricity.

Baseline Forecast: The "no new action" scenario – status quo with slow change and continued trends.

Wedge Diagram – Achievable Potential

- Shows annual Mt CO₂ reductions relative to the Baseline (black) and current carbon sinks.
- Includes baseline annual sequestration (grey) at 46 Mt CO₂ per year from Georgia's natural carbon sinks
- All 20 solutions are set to their achievable potential
- The carbon impact of electric vehicles is enhanced by solar power

GRAWDOWN

Wedge Diagram – Technical Potential

- All 20 solutions are set to their technical potential
- Carbon emission reductions overshoot zero by 11% in 2030.
- More carbon is sequestered than emitted in GA by 2025
- Retrofitting impacts are still large, even with low-carbon electricity.

What are the total private costs and benefits of all 20 "achievable" solutions in 2030: \$140 M of costs to \$12 B of benefits

Annual Carbon Abatement Potential in Mt CO2-e in 2030

Abatement cost curves are tricky because solutions don't operate in isolation

······ WEAKLY COMPETITIVE

STRONGLY COMPETITIVE

If large-scale solar reaches its Achievable Scenario in 2030:

--EVs would reduce an additional 1.4 Mt CO₂

--Retrofitting would deliver 0.7 Mt CO₂ less reduction

Strategies need to consider interactions and "systems" of solutions.

INTRO & OVERVIEW

Opening Remarks John Lanier, Ray C. Anderson Foundation

Overview Daniel Rochberg, Emory Marilyn Brown, Georgia Tech

METHODS & FINDINGS

Electricity Marilyn Brown, Georgia Tech Transportation Mike Rodgers, Georgia Tech Buildings & Materials Dan Matisoff, Georgia Tech Food & Agriculture

Sudhagar Mani, UGA Land Sinks Jackie Mohan, UGA Beyond Carbon Michael Oxman, Georgia Tech

NEXT STEPS

Next Steps Beril Toktay, Georgia Tech Marilyn Brown, Georgia Tech

Q & A Kim Cobb, Georgia Tech Blair Beasley, Emory Marshall Shepherd, UGA

Electricity Generation

- Cogeneration
- Demand Response
- Large-Scale Solar
- Rooftop Solar
- Landfill Methane

Dr. Marilyn A. Brown, CEM, NAE, NAS Interim Chair, School of Public Policy Georgia Institute of Technology Email: mbrown9@gatech.edu Twitter: @Marilyn_Brown1 | Phone: 404-385-0303 www.marilynbrown.gatech.edu Climate and Energy Policy Lab: www.cepl.gatech.edu

Rooftop Solar Achievable Potential: A megaton of carbon reductions is possible by 2030, and building owners with solar panels would save money

(19

Installing rooftop solar on suitable roofs in Georgia could provide cost savings to building owners

	Panel Gen Capacity F Year of ins Financing	eration Dee Factor (Gen stallation/fin Period = S	cay era nan yst	(% itioi icin em	/yr) 0.5 n/Nameplate) 14.7% lg 2030 Lifetime (yr) 25	
Residential	Surplus B	uyback Rat	io (%	of Retail Price) 100%	mercial
Nameplate (DC) Pow	ver (kW)	6.2		ſ	Nameplate (DC) Power (kW)	200
System Cost As Inst	alled (2017\$)	\$9,533			System Cost As Installed (2017\$)	\$141,150
Initial Year Generation (MWh)		8			Initial Year Generation (MWh)	258.1
Annual Consumption (MWh)		10.97			Annual Consumption (MWh)	354.8
Initial Year Electricity Price (2017¢/kWh)		12.45			Initial Year Electricity Price (2017¢/kWh)	10.50
Financing Annual Interest Rate		5.00%			Financing Annual Interest Rate	3.50%
Financing Fee (2017\$)		\$1,000			Financing Fee (2017\$)	\$0
Annual payments (current year \$)		\$832.55			Annual payments (current year \$)	\$10,556
PV of Net Savings vs. No Solar (2017\$)		\$7,619			PV of Net Savings vs. No Solar (2017\$)	\$427,096
CO ₂ from outside generation avoided (tonnes)		72.0			CO ₂ from outside generation avoided (tonnes)	2324
Net Cost to Owner Per Tonnes CO ₂ Abated		-\$106 -	\mathbf{h}	╓╴	Net Cost to Owner Per Tonnes CO ₂ Abated	-\$184
Initial Yr Elec Price f	or No Savings (2017¢/kWh)	8.32			Initial Yr Elec Price for No Savings (2017¢/kWh)	3.16

Weighted Average of Residential and Commercial: \$134/tCO₂

Demand response clips expensive and polluting peak electricity, and can lower bills for consumers

We used the GT-NEMS (National Energy Modeling System) to study demand response in Georgia.

Georgia businesses would see lower electricity prices and bills, saving ~\$15.5 million each year over the decade

Achievable Potential **Technical Potential** 1.0% Difference from Baseline Forecast (%) Change in Energy Bills (\$) 0.5% -\$55.5m -\$82.4m -\$29.5m -\$2m 0.0% -0.5% -1.0% -1.5% -2.0% 2025 2030 2025 2030

Business Sector:

- Achievable Potential Consumption Achievable Potential Prices
- Technical Potential Consumption
 Technical Potential Prices
- ◆ Achievable Potential Bills

▲ Technical Potential Bills

Demand Response Also Delivers Significant Air Quality and Public Health Benefits

- Lower SO₂ and NOx levels result in fewer respiratory illnesses such as asthma, particularly in children.
- Reducing fine particulates has significant health benefits:
 - especially for children lower incidence of preterm birth, low-birth weight, and autism spectrum disorder.
 - also for adults fewer premature deaths, heart attacks, and respiratory illnesses.
- Other important benefits include increased workforce productivity and quality of life.

Environmental, public health, and ecosystem benefits of reduced air pollution from demand response

- Total benefits from reduced SO₂, NOx, PM10, and PM2.5 = \$21 million in 2030.
- Total for $CO_2 = 123 million in 2030.

Transportation

- Alternative Mobility
- Electric Vehicles
- Energy-Efficient Cars
- Energy-Efficient Trucks
- Mass Transit

Dr. Michael O. Rodgers Regents Researcher Transportation Systems Engineering Georgia Institute of Technology michael.rodgers@ce.gatech.edu

Electric Vehicles

EVs can contribute additional CO2 reductions beyond a favorable baseline trend by 2030

1 MtCO₂e solution in 2030 = an additional 250,000 gasoline cars are replaced with electric vehicles.

Baseline = Assumes business as usual for fuel economy and CO2 reductions, driven by new vehicle technologies and Federal CAFE regs

Achievable Potential =Approximately **310,000 EVs in** Georgia's Light Duty Vehicle Fleet (i.e., about 4% of the total fleet), and accounting for 15% of new LDV sales in 2030

Technical Potential = Approximately **680,000 EVs** in the Georgia LDV fleet (9% of the total fleet), and 35% of new LDV sales by 2030. Contributing **2.3MtCO₂/yr** reductions compared to baseline.

+Improved Air Quality

- +Approaching TCO price parity
- +Lower operating & maintenance costs
- -Affordability on capital cost basis

Despite an aggressive baseline, grid CO₂ intensity reductions propel per vehicle EV contributions

(25)

Energy-Efficient Trucks

M/HD Trucks can contribute additional CO2 reductions beyond a favorable baseline trend by 2030

1 MtCO₂e solution in 2030 = net reduction of 100 million gallons of diesel fuel consumption (>1 billion gallons consumed by ~400k trucks in GA annually)

Majority of benefits derive from Medium Duty Applications

Baseline = Assumes business as usual for fuel economy and CO2 reductions, driven by new vehicle technologies and Federal CAFÉ regulations

Achievable Potential = 25% overall reduction in truck fuel consumption by 2030.

Technical Potential = \sim 30% overall reduction in truck fuel consumption by 2030

Contributing **4.2 MtCO₂e/y** reductions compared to baseline.

+Improved Air Quality+Approaching TCO price parity+Lower operating & maintenance costs

-Affordability on capital cost basis

Transportation KEY POINTS

Major Insights from our Analysis:

- **Baseline** CO_2 trends of the future fleet are already on pace to shed 5 MtCO₂-e/yr by 2030!
- "Electric Vehicle" (EV) technologies cut across **all 5** transportation solutions
- The most significant near-term opportunities are in Energy Efficient Medium Duty Trucks
- Alt mobility and transit both show potential, but include **behavioral and land use** considerations
- Energy efficient light duty vehicle technologies are **low-cost and high impact** during 2020-2025
- Light duty EVs may reach TCO (cost) parity by 2030 but subject to several unknowns:
 - E.g., the cost of fuel and batteries, tax credits, & charging
- Transportation solutions are **complementary & diverse**; benefits can stretch far beyond 2030
- Major air quality benefits are also expected, provided affordability and access are prioritized

Alternative Transportation

- Shift 5 10% trips < 4 miles from cars to bike / walk / LIT
- Achievable potential increases bike / walk / LIT to 45-55% for <0.5 miles, 22-32% for <4 miles
- Eligible workers would telecommute 1 additional day per week for 20% increase
- Each additional mile of bike lane constructed increases bike ridership by 1% and costs \$500k
- Assumptions Private benefits reflect annual savings from avoided VMTs - \$0.60 per mile

Results

Achievable CO2 Savings	PV Private Costs	PV Private Benefits	
1.8-3.6 MtCO ₂ e	\$1.3 Billion – 1.7 Billion	\$7.4 Billion – 9.7 Billion	

Distance	Bike + Walk Share	Transit Share	Auto Share
<0.5 mile	35.4%	0.2%	64.4%
0.5-1 mile	24.6%	0.3%	75.0%
1-2 miles	17.6%	0.5%	81.9%
2-4 miles	12.2%	0.6%	87.2%
>4 miles	0.2%	1.5%	98.3%

Technical Potential:

- 45% trips < 4 miles are • walk / bike / LIT
- 50% telecommuting \bullet

21.5 MtCO₂e

Buildings and Materials

- Recycling/Waste Management
- Refrigerant Management
- Retrofitting

Dr. Daniel Matisoff Associate Professor, School of Public Policy Georgia Institute of Technology Phone: 404-385-0504 Climate and Energy Policy Lab: <u>www.cepl.gatech.edu</u>

Retrofitting Buildings

Assumptions

Technologies (from focus group)

- Smart Thermostats/Building Automation
- LED Lighting
- Insulation
- Water Heaters
- Heat Pumps
- Windows (Residential)
- Recommissioning

Cumulative retrofit rate by 2030

Technology	ST	LED	INS	WH	HP
Residential	20%	20%	20%	20%	20%
Technology	BA	LED	RECOM	INS	HP
Commercial	20%	20%	20%	0%	0%

Financial

- Discount rate = 12%
- · Administrative costs excluded
- +Less air pollution
 +Local jobs
 +Less energy burden
 +Public health benefits
 -High upfront cost

Results

Achievable Potential 2.6-4 Mt	
	\$2(

NPV Private Costs \$2.5B – \$5.4B initial costs NPV Private Benefits .0B – \$8.0B avoided energy costs

Improving Recycling in Georgia

Assumptions:

- Improve efficiency of existing programs
 with information programs
- Focus on improving paper and plastic recycling (quality & quantity)
- Georgia's recycling rate is just 6.6% far below U.S. average of 22.6%
- Increase recycling rate to 13-20%
- A \$1 per-household increase on spending for recycling information programs can increase recycling rates by 1-3%

Conclusions:

- Waste management and recycling data are outdated
- Economics are highly dependent on *HOW* recycling programs are improved

Statewide MSW Tons Disposed (2005)

Results

Achievable CO ₂ Savings	PV Costs	PV Benefits	
2.0-4.1 MtCO ₂ e	\$21M - \$59M	\$104M - \$147M	

Food & Agriculture Systems

- Composting
- Conservation Agriculture
- Plant-Rich Diet
- Reduced Food Waste

Dr. Sudhagar Mani Professor, School of Chemicals, Materials, and Biomedical Engineering University of Georgia Phone: 706-542-2358 Email: smani@engr.uga.edu 0155F Riverbend Research Center North 110 Riverbend Road, Athens, GA, 30602

Reduced Food Waste

A path towards zero food waste

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Baseline = Estimate based on emissions due to food production and current disposal methods.

Achievable Potential = 20% reduction of food wastes/losses reduces **1.8 MMtCO₂** in 2030 (equivalent to about 0.5 million ton)

<u>Technical Potential</u> = 50% reduction of food waste/losses reduces **4.5 MMtCO**₂ in 2030.

- + More job creation
- + Cost saving
- + Less food insecurity
- + Less air and water pollutions
- + Food donation tax benefits

l		Avoided CO _{2-e} (Mt CO ₂) in 2030	Annually
	Achievable	1.8	chain fro
	Technical	4.5	

nnually, about 2.1 million tons of food wastes along the supply nain from production to final disposal.

Plant-Rich Diet – Strategies to shift diet/consumption

	Potential Strategies	Expected impact	
RMS MINI		(%)	Remarks
Make socially desirable	Health Awareness Campaign	high	Implement awareness campaign about the health, social and environmental benefits of plant-rich diets, reduce over consumption of beef and animal-based protein,
Make socially unacceptable	Development of New Veg. Foods Challenge	medium	Funds to promote the development of new vegetarian foods that adds taste, flavor and display
SHIFT CONSUMPTION Be more memorable Meet current key needs	Enhance display and affortability	medium	Empower retails to display plant-rich foods and keep them affordable to public
Constrain Deliver new compelling	Govt. policies and regulations	high	Policies and regulations that promote general health of public and diet choices
Enhance display Enhance affordability Connet Line	Advertisement (various venues) in partnership with private companies/non-profits	medium	Use media to bring awareness of the veg. products and health benefits and health issues of animal-rich diets, especially red meat
ST SELLA	Community/Social groups	Medium/Low	Promote community groups

Source: Ranganathan, J. et al. 2016. "Shifting Diets for a Sustainable Food Future." Working Paper, Installment 11 of Creating a Sustainable Food Future. Washington, DC: World Resources Institute. Accessible at http://www.worldresourcesreport.org.

Composting	Negative costs and a simple solution to zero landfill Georgia
<u>Current Capacity</u> : 2.6 million tons of organic wastes including food wastes landfilled	Biological aerobic process to decompose organic wastes by microorganisms into stable organic materials - compost A valuable soil conditioner or fertilizer that improves plant growth, sequesters soil carbon and prevents soil
<u>Technical Potential</u> : Reduction of 1.4 Mt CO ₂ in 2030	erosion 200 Achievable potential: 1.3 million tons of organic waste diverted fro through composting by 2030
Achievable Potential: Reduction of 0.7 Mt CO ₂ in 2030	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Negative Costs: -\$17/tCO ₂ in 2030	₹

Figure 1. Location of 38 Overgia composing facilities, which participated in the survey, represented as manippel, institutional and private operations.

Stakeholder Analysis of Conservation Agriculture

Land Sinks

- Temperate Forest Protection & Management
- Afforestation & Silvopasture
- Coastal Wetlands

Jacqueline E. Mohan, M.E.M., Ph.D. Associate Professor, Terrestrial Ecosystem Ecology & Biogeochemistry Odum School of Ecology University of Georgia 517 BioSciences Bldg. Athens, Georgia 30602, USA Web: https://www.ecology.uga.edu/directory/jacquelinemohan/

Earth Has 3 Natural Carbon "Sinks"

Annual CO₂ Storage from Afforestation & Silvopasture (in Pastures Only)

- —Achievable Potential 20% Pastures Mixed HW+PITA
- Technical Potential 100% Pastures Mixed HW+PITA
 - Extreme Technical Potential 100% Pasture in Loblolly Pine

1 MtCO₂e solution in 2030 = Planting **7%** of current Pasture lands with mixed hardwood & loblolly tree species using staggered planting times.

- +Improved health & productivity of livestock
- +Biodiversity
- +Improved stream water quality
- Potential slight reduction in forage availability

Baseline = Currently very little Silvopasture efforts in Georgia.

Achievable Potential = Planting 20% of current Pasture lands with mixed tree species (loblolly pine + hardwoods) stores **2.8 MtCO**₂ per year by 2030. Uses staggered tree planting half in 2020-2021 timeframe; half around 2025. Includes CO_2e stored in trees and soil.

Technical Potential = Planting 100% of current Pasture lands with mixed tree species (loblolly pine + hardwoods) stores **14.3 MtCO**₂ per year by 2030. Uses staggered tree planting half in 2020-2021 timeframe; half around 2025. Includes CO₂e stored in trees and soil. **Extreme Technical Potential** = Planting 100% of current Pasture lands with loblolly pine (PITA) stores **19.5 MtCO**₂e per year by 2030. Uses staggered tree planting half in 2020-2021 timeframe; half around 2025. Includes CO₂ stored in trees and soil.

Afforestation & Silvopasture

Plant Rich Diet

 More silvopasture would not support plant rich diets

Rooftop Solar

 Would not compete with new forest acreage and croplands

Large-Scale Solar

 New forest and croplands would occupy lands that otherwise could be used for solar farms

LAND

Temperate Forest Annual CO₂ Storage (Trees + Soil)

1 MtCO₂e solution in 2030 = Increasing forest cover by **3.4%** with mixed tree species would enhance annual CO₂e storage by 1 Mt by year 2030. Equivalent here to "Achievable Potential."

Baseline = Currently Georgia's Temperate Forests store around **27** $MtCO_2e$ each year in trees & soils. This amount will increase over time as trees continue to grow.

1 Mt CO_2e = Increasing forest cover by 3.4% would increase annual CO_2e storage by **1** Mt per year by 2030. All Planting times are staggered with half around 2021 and half around 2025.

Achievable Potential = Increasing forest cover by 10% would increase annual CO_2 e storage by 2.8 Mt per year by 2030.

Technical Potential = Increasing current forest cover by 15% would increase annual CO_2e storage by an additional **4.3 MtCO_2e.** Planting time is staggered with half around 2021 and half around 2025.

+ Jobs

- + Biodiversity
- + Low-cost, healthy recreational opportunities
- + Improved stream/river water quality
- + Potential increased property values/costs

Beyond Carbon

- Environment
- Economy
- Public Health
- Equity

कि रि वि

Michael Oxman Managing Director, Ray C. Anderson Center for Sustainable Business Professor of the Practice, Georgia Tech Scheller College of Business Phone: 404-385-4884 Email: michael.oxman@scheller.gatech.edu

Beyond Carbon Working Group Image: Comparison of the societal impacts Image: Comparison of the societal

Air quality	Affordability	Local Economy & Employment	Premature Mortality
Water quality, quantity, and access	Workforce/Business Diversity	Input Prices/System Costs	Morbidity
Land use	Distribution of Public Health Impacts	Workforce job quality	Quality of Life
Ecosystems/ biodiversity	Accessibility of Solutions	Wages and benefits	Education
Material disposability	Cultural Fit & Way of Life	Property values / Tax Base	Public Safety

Infrastructure requirements

Retrofitting Example: Equity Challenges, Opportunities, and Possible Initiatives

Forthcoming Quantification of Solution Beyond Carbon Benefits

Quantification of Selected Solution Benefits (Public Health and/or Job Creation)

- Electric Sector
 - Cogeneration
 - Demand Response
 - Large-Scale Solar
 - Rooftop Solar
 - Landfill Methane
- Transportation
 - Electric Vehicles
 - Energy-Efficient Light & Heavy DVs
 - Mass Transit & TOD
 - Alternative Mobility
- Built Environment
 - Recycling/Waste Management
 - Refrigerant Management
 - Retrofitting

Benefits of reduced air pollution from "zerocarbon" electricity solutions in Georgia

Benefits in Million \$2017 per Metric Ton of CO₂

Initial Assessments Across Multiple Solutions

Material Benefits/Concerns Flagged

46

INTRO & OVERVIEW

Opening Remarks John Lanier, Ray C. Anderson Foundation

Overview Daniel Rochberg, Emory Marilyn Brown, Georgia Tech **METHODS & FINDINGS**

Electricity Marilyn Brown, Georgia Tech Transportation Mike Rodgers, Georgia Tech Buildings & Materials Dan Matisoff, Georgia Tech

Food & Agriculture Sudhagar Mani, UGA Land Sinks Jackie Mohan, UGA Beyond Carbon Michael Oxman, Georgia Tech

NEXT STEPS

Next Steps Marilyn Brown, Georgia Tech

Q & A Kim Cobb, Georgia Tech Blair Beasley, Emory Marshall Shepherd, UGA

48

Preview of Future Research Products & Goals

Coming Attractions:

We will soon have a calculator tool that you can play with

What's next for the research team: Geospatial tracking & business engagement to activate Drawdown solutions in Georgia

1. Track the GHG Footprint of Georgia's Counties and Metro Areas

Goal: Develop a GHG tracking system for Georgia to underpin Drawdown Georgia activation

2. Engage Business

Goal: Make the output of Georgia Drawdown accessible to business decision makers to stimulate interest in individual and collective commitments

3. Evaluate, Plan and Track Activation of Five Solutions

Goal: Triangulate approaches to activate highimpact solutions in Georgia

For more information contact us: <u>Drawdown@gatech.edu</u>, <u>https://drawdownga.org</u>, <u>https://cepl.gatech.edu/projects/Drawdown-Georgia</u>