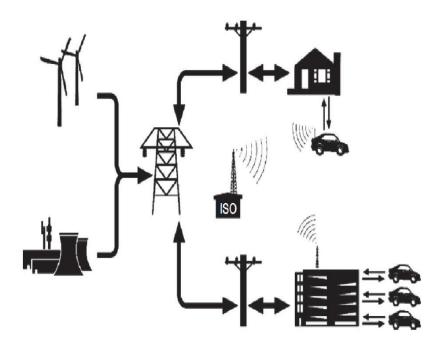
Smart Grid Subcommittee Report

Marilyn Brown Subcommittee Vice-Chair

U.S. Department of Electricity Electricity Advisory Committee February 20, 2018

Subcommittee Overview

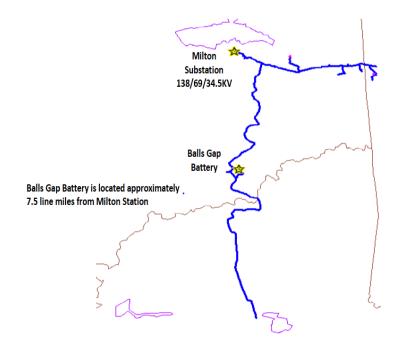

Statutory basis: The Energy Independence & Security Act of 2007 §1303 advised DOE to establish a smart grid advisory committee covering:

"the development of smart grid technologies, the progress of a national transition to the use of smart-grid technologies and services, the evolution of widely-accepted technical and practical standards and protocols to allow interoperability and inter-communication among smartgrid capable devices, and the optimum means of using Federal incentive authority to encourage such progress."

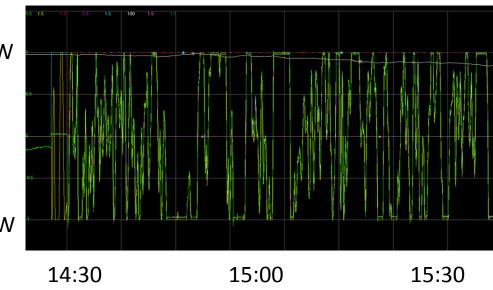
Four Work Product Proposals in Oct. 2017 were Consolidated into Two

 Integration of Electric Vehicles into the Smart
Grid + Business Models
for Non-Utility
Participants

2. Resiliency and Reliability+ InfrastructureInvestment in the Grid

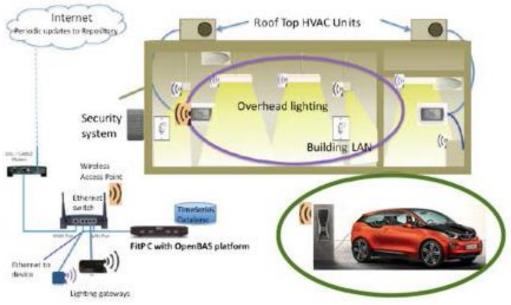

Subcommittee Work

- Presentation by Tom Weaver (AEP) on "Applying DER for Resiliency on Distribution Circuits" on 11/16/17
- The Balls Gap project: 2 MW NAS Battery
- Constructed in 2008 and placed in service in January, 2009


1 MW

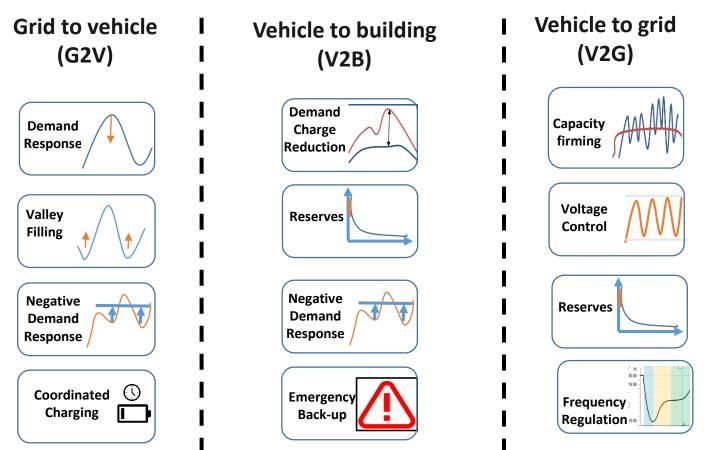
0

- ✓ Peak Shaving Reduced load on the Milton 2, 138-34.5 KV transformer
- ✓ Islanding Ability to separate from the Milton and serve up to 800 customers for 6 hours -1 MW



Battery output in PJM market

Subcommittee Work


- Presentation by Timothy Lipman (UC-Berkeley) on "Open Source Platform for Plug-in EV Smart Charging in California" on 1/18/18
 - ✓ Develop open-source software code to interface with EV chargers for load control
 - ✓ Develop algorithms for congestion relief and voltage regulation through smart charging

Decentralized and Open-Source Architecture Platform

Subcommittee Work: Foundations for White Paper on EV Integration*

Mode of EV Integration Defines Resiliency Impacts & Services

*Support for this research was provided by Georgia Tech's Energy Policy and Innovation Center and Brook Byers Institute for Sustainable Systems: https://cepl.gatech.edu/projects/sgp/GIV.

Types of Barriers and Challenges to Grid-Integrated Vehicles

Technological Factors

Degradation of batteries

Surge in demand with DC fast charging

DC compatibility with bidirectional flows

Latency following signal inputs from aggregators

Socioeconomic/ Financial factors

Transaction costs with EV owners

Warranties provided by EV manufacturers

Payments to charging station owners for ancillary services

Unclear conformance with cost-recovery utility financing

Range anxiety

Access to charging infrastructure

Policy/Regulatory Factors

Tariff or rate design policies

Valuing ancillary services in a vertically integrated market

Open source architecture platform

Creating resiliency service products in wholesale markets

Certification of charging infrastructure

Business Models for Grid-Integrated Vehicles

Vehicle Ownership Models Models Emerging Business Models of EV Integration Electricity Market Models

Interaction with Battery **Asset Ownership Mobility Services** Utilities Management Battery Swapping Owning vehicles Contracts with Leasing cars to customers utilities for retail Aggregator •Owning charging Contracting with Coverage services equipment fleet owners Manufacturer Contracts with •Leasing the • Contracting with warranty grid operators vehicles and ride share services • Fleet owner charging Resiliency Contracting with warranty equipment services car rental services marketed as Managing and Providing ancillary products coordinating subscription in wholesale services for charging markets recharging

Timeline and Next Steps

1. A Google survey has been drafted and field-tested; finalize it and initiate the survey of EAC members

- 2. EERE speaker at March subcommittee phone call
- 3. Analyze survey results and discuss them during April call
- 4. Complete white paper for review at July 2018 EAC meeting

For more information:

Dr. Marilyn A. Brown Regents Professor of Sustainable Systems Georgia Institute of Technology

Email: mbrown9@gatech.edu Phone: <u>404-385-0303</u> (O) 404-275-0482 (C) <u>http://marilynbrown.gatech.edu/</u>