Modeling the Impact of a Carbon Tax on the Commercial Building Sector

PRESENTED AT THE 2012 ACEEE SUMMER STUDY ON EFFICIENCY IN BUILDINGS

MARILYN BROWN
MATT COX
XIAOJING SUN

Why a Carbon Tax?

- Climate change is an unintended consequence of burning fossil fuels
 - "Climate change is the greatest and widest-ranging market failure ever seen." (Stern, 2007)
- A Pigouvian tax is an economically efficient means of addressing an externality

	Economic Desirability*						
		High	Medium	Low			
Political Feasibility	High			Renewable portfolio standards (29)			
	Medium	Cap and trade (13-23)					
	Low	Carbon tax (0)					

*Numbers in parentheses indicate the number of states that have adopted each regulatory approach.

Interest in a Carbon Tax Remains

- The Managed Carbon Price Act of 2012
- Brookings Reports
- Australian Carbon Tax
- Citizens Climate Lobby, AEI, Climate Crisis Coalition
- Numerous ongoing local efforts
 - Vancouver/British Columbia
 - Babylon NY

Research Question and Methods

- What would the impact of an efficient carbon tax be on the commercial building sector?
- Utilize GT-NEMS 2011
 - O Derived from AEO 2011 NEMS
 - Models ~350 technologies in 10 end uses across 11 building types and 9 census divisions
- Institute CO₂ tax in 2015
 - Cost schedules vary; main scenario starts at \$25/metric ton and increases at 5% annually
- Enable High Tech Equipment Menu
 - Lower cost, higher efficiency, earlier availability
 - Used by a subset of scenarios

Benefits and Limitations of GT-NEMS

Advantages

- Detailed characterization of technologies, end-uses, building types, geography, and investments
- Integrated solution shows interactions with price and other sectors, up to the macro-economy

Disadvantages

- Lack of holistic building design and operations perspective
- Building shell simplicity
- Elevated consumer discount rates
- Limited revenue recycling options
- 25-year time frame

Scenarios

Main Tax Scenario:

• An economy-wide tax on CO₂ emissions, starting from \$25/ton of CO₂, increasing 5% annually

Low-tax Scenario:

\$5 per metric ton of CO₂, increasing 5% annually

Social Cost of Carbon (SCC) Moderate-tax Scenario:

6 Based on the SCC estimates calculated with a 3% discount rate (EPA, 2010)

• SCC High-tax Scenario:

Based on the SCC estimates calculated with a 2.5% discount rate

EIA GHG Scenario:

The AEO 2011 GHG Price Economy-wide Case (EIA, 2011)

Best Tech Scenario:

Follows the EIA best-tech case, where the most efficient technology is always selected; intended as a low bound

Carbon Tax Schedules (2009-\$/MTCO₂)

	Low	SCC Moderate	Main Tax Scenario	SCC High	EIA GHG
2015	5	23.3	25	39.7	27.6
2020	7.8	25.8	31.9	43.2	35.5
2025	9.0	28.7	40.7	47.3	45.5
2030	10.5	32.1	52.0	51.7	58.4
2035	12.1	35.5	66.3	56.1	75

Results: National CO₂ Emissions Decline

Commercial Sector CO₂ Emissions are Cut by More Than a Third

The Bulk of CO₂ Reductions Come From Changes in Utility Generation Mix

Energy Intensity Declines Fastest in the Commercial Sector

Commercial Energy Consumption Decreases 12% in 2035 in the Main Tax + High Tech Scenario

The Tax Drives Prices Higher

Significant Improvements in the Selection of Efficient Equipment

Technology	2010-	2020	2020-2035		
rechnology	Ascendant	Declining	Ascendant	Declining	
Electric Space Heating	Ground source heat pumps	Air source heat pumps	High efficiency air source heat pumps	Low efficience air source he pumps	
Natural Gas Space Heating	High efficiency furnaces and boilers	Low efficiency furnaces and boilers	High efficiency gas furnaces and boilers	Low efficience furnaces and boilers	
Electric Cooling	Mid-efficiency rooftop AC	Expensive rooftop AC; wall and window AC	Mid-efficiency rooftop AC	Expensive rooftop AC a low efficience	
Electric Water Heating	Solar and heat pump water heaters	Electric resistance water heaters	High efficiency solar and heat pump water heaters	chillers Electric resistance water heater	
Natural Gas Water Heating	Standard Gas water heaters	High efficiency gas water heaters	High efficiency gas water heater	Older high efficiency ga water heater	
Lighting	Advanced F32T8 and LEDs	Standard F32T8 HE	Typical F32T8 and LEDs	26W CFLs, Standard F32 HE, 70W HIF	

Expanded Investment in Efficient Technologies Increases Equipment Expenditures

Year	Total in Reference Case	Total in Main Tax + High Tech Scenario	Incremental Investment Cost: Annual	Incremental Investment Cost: Cumulative*
2020	67.1	75.5	8.4 (12.5%)	69
2035	79.1	89.5	10.4 (13.1%)	162

^{*}Present values were calculated using a 3% discount rate. All values in Billions 2009-\$.

Energy Savings are Lower than Carbon Reductions for All Regions

Energy Savings in Buildings Scale According to the Energy Intensity of Operations

Main Tax + High Tech Case Would Delay the National GDP by at Most 3.1 Days

Scenario	GDP (Billion 2009-\$)	2015	2020	2035
Reference	GDP	16,850	19,140	28,220
Main Tax	GDP	16,790 18,970		28,130
	Change*	-0.33%	-0.86%	-0.32%
	Delay (day)**	1.2	3.1	1.2
Main Tax + High Tech	GDP	16,790	18,970	28,120
	Change*	-0.36%	-0.86%	-0.34%
	Delay (day)**	1.2	3.1	1.2

^{*}Numbers are percentage change relative to the Reference case

^{**&}quot;Delay" in GDP growth is defined as the number of days in a year required to make up the difference between GDP in the Reference case versus GDP in the carbon tax policy scenarios.

Additional Emissions Benefits Are Potentially Worth Billions

Year	Value of Avoided CO ₂ : Annual	Value of Avoided CO ₂ : Cumulative**
2020	5	23
2035	19	187
Total Impact		363

This corresponds to an 18% drop in commercial sector emissions

Year	Value of Avoided SO₂: Annual	Value of Avoided SO₂: Cumulative*	Value of Avoided NO _x : Annual	Value of Avoided NO _x : Cumulative*	Value of Avoided PM: Annual*	Value of Avoided PM: Cumulative**
2020	5.4	22	0.4	1.7	0.4	1.6
2035	9.3	133	0.7	9.3	0.7	9.0
Total Impact		205		14.6		14.2

^{*} Both PM₁₀ and PM_{2.5} are included

Estimates do not include various non-monetized values (e.g. mercury pollution reduction, increased productivity, water quality impacts, etc.). All values in billions of 2009-\$.

^{**}Present values were calculated using a 3% discount rate.

Benefits of the Tax Offset the Costs if Tax Revenues are Rebated to Citizens

and the second	Cumulativ (Billions \$2	e Social Bei 2009)	nefits		Cumulative Social (Billions \$2009)	l Costs		Benefit/Co	st Analysis
Year	Tax Rebates	Value of Avoided CO ₂	Value of Avoided Criteria Pollutants	Total Social Benefits	New Equipment Expenditures	Energy Expenditures	Total Social Costs**	Social B/C Ratio	Net Societal Benefits (Billions \$2009)
2020	152.9	22.5	30.8	206.2	155.9	109.7	265.5		
2035	788.3	187.0	237.5	1212.8	452.5	643.4	1095.9		
Total Impact	788.3	362.8	437.6	1588.7	452.5	1092.3	1544.9	1.0	44

Conclusions

- The commercial sector is more responsive to a carbon tax than other demand sectors of the economy
- A carbon tax slows the projected growth in CO₂ and energy consumption
 - 18% decline in commercial CO₂ emissions contribute to a 10% decline in national CO₂ emissions in 2020
 - A 38% decline in commercial emissions contributes to the 22% decline in 2035
 - o 7% reduction in commercial energy consumption in 2020; 12% by 2035
- A high level of associated emissions benefits couple with higher energy and equipment expenditures
- GDP grows slightly slower, recovering in a few days
- The carbon tax analyzed misses Better Buildings and Copenhagen goals

Next Steps: Analyzing an Integrated Carbon and Energy Policy Portfolio

- Overcoming Information Gaps through Energy Benchmarking
- Implementing Aggressive Commercial Building Codes
- Making Buildings Part of the Climate Solution with Flexible Innovative Financing
- Integration of all four

For More Information*

Dr. Marilyn A. Brown (Professor)	Matt Cox (PhD Student & NSF Fellow)	Xiaojing Sun (PhD Student)
Georgia Institute of Technology	Georgia Institute of Technology	Georgia Institute of Technology
School of Public Policy	School of Public Policy	School of Public Policy
Atlanta, GA 30332-0345	Atlanta, GA 30332-0345	Atlanta, GA 30332-0345
Marilyn.Brown@pubpolicy. gatech.edu	matt.cox@gatech.edu	xsun44@gatech.edu

^{*}Support for this research was provided by Oak Ridge National Laboratory and is greatly appreciated. This research benefited from discussions at a commercial buildings policy workshop sponsored by the U.S. Department of Energy's Office of Policy and International Affairs, Climate Change Policy and Technology. A report on the workshop can be found at: http://www.energetics.com/pdfs/CommercialBuildingPolicyWorkshop.pdf.

Back ups

Sources of Electricity Generation

