### Large-Scale Solar

- Large-Scale Solar includes solar farms and community solar projects.
- Solar farms can have capacities ranging from a few hundred kW to over 100 MW.
- Smaller, community solar projects generally range from a few hundred kW to a few MW.



Silicon Ranch/Green Power EMC, 55 MW System





Jekyll Island, 1 MW Community Solar System



The Ray Along Georgia Route 85











### Solar Farms & Community Solar

## Achievable & Technical Potential Modelled with GT-NEMS\*



<u>Current Capacity</u>: Solar PV capacity in Georgia in 2019 totalled > 1,570 MW, offsetting ~1.3 Mt CO<sub>2</sub>

Achievable Potential: Reduction of 11.2 Mt CO<sub>2</sub> in 2030

<u>Technical Potential</u>: Reduction of 21.4 Mt CO<sub>2</sub> in 2030

- We estimate the achievable potential for large-scale solar by modeling a carbon tax of \$10/tCO<sub>2</sub> levied on carbon dioxide emitted by the electricity sector
- Implemented at \$10 in 2022, the tax increases to \$12 in 2025 and \$15 in 2030 (in \$2017).
- Technical potential is modelled similarly, starting with a carbon tax of  $15/tCO_2$ .
- All carbon tax revenues are recycled back to households on a per capita basis.
- GT-NEMS models the 22 NERC regions, and we model Georgia as 40.9% of the generation and emissions of the SERC-SE region.

\*NEMS=National Energy Modeling System

# Georgia is well suited for large-scale solar







Source: EIA, 2020; Bolinger et al., 2019





 Solar farms and community solar are widely distributed across Georgia

Georgia has ample solar radiation – comparable to Florida – and land is plentiful & affordable

Source: World Bank's Global Solar Atlas, 2020



### Lage-Scale Solar

Our working scenarios suggest significant carbon reduction potential by 2030



**Baseline Forecast** = Growth of utility solar to ~2.5 GW in 2030, ~4.5% of Georgia's generation.

<u>Achievable Potential</u> = Reduction of 11.2 MtCO<sub>2</sub>, with 11% of solar generation in 2030 - 5.4 GW, and associated energy-system upgrades.

<u>**Technical Potential**</u> = Reduction of 21.4 MtCO<sub>2</sub>, with 18% of solar generation in 2030 - 8.7 GW.

1 MtCO<sub>2</sub>e solution in 2030 = 20 more 50 MW solar farms and 36 more 5 MW community solar systems in 2030, for a total of ~1.2 GW, occupying ~15 square miles of land. ~0.1% of Georgia's farmland
~0.04% of Georgia's 24 million acres of forestland
<size of Dalton, GA</li>

+Local jobs and local taxes +Rents to landowners +Less air pollution +Public health benefits -Ecosystem impacts -Costs/tCO<sub>2</sub> averted = \$51-63

### **Electricity Generation in Georgia in 2030 Would be Significantly Cleaner**



### Air Pollutants Show Sizeable Reductions and Monetary Benefits



- Lower SO<sub>2</sub> and NOx levels result in fewer respiratory illnesses such as asthma, particularly in children.
- Reducing fine particulates has significant health benefits:
  - especially for children lower incidence of preterm birth, low-birth weight, and autism spectrum disorder.
  - also for adults fewer premature deaths, heart attacks, and respiratory illnesses.
- Other important benefits include increased workforce productivity and quality of life.

- The monetary benefits of reduced SO<sub>2</sub>, NOx, PM10, and PM2.5 in the achievable scenario totals \$116 million in 2030.
- Adding the avoided costs from CO<sub>2</sub> brings the total to \$778 million in 2030.





### Increase in Residential Energy Bills is Significantly Lessened by Tax Dividends



**Baseline** = Average annual household energy bills increase 4.6% from 2020 to 2030.

Achievable Potential = Tax dividends save households \$322 Million, lowering energy bills below baseline.

Technical Potential = Tax dividends save households \$329 Million, increasing energy bills only 5.6% over baseline.

### **Costs from Power Purchase Agreements in 2030**



Estimated Private Costs and Benefits of the 1 Mt CO<sub>2</sub> Opportunity in 2030, in \$2017

| Costs in 2030                                                                                                              | Benefits in 2030                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assume a levelized cost of \$33.5/MWh of<br>solar generation.<br>Year 1 cost = \$86.4 million (2,580 GWh x<br>\$33.5/MWh). | Assume that a utility in Georgia issued a<br>purchase power agreement (PPA) for<br>\$35/MWh of solar generation.<br>Year 1 revenues = \$90.3 million (2,580 GWh x<br>\$35/MWh). |

Conclusion: The net present cost (NPC) of investing in 1,178 MW of new solar capacity, or a 1 Mt CO<sub>2</sub> reduction in Georgia's carbon footprint in 2030 is \$86.4 million - \$90.3 million = - \$3.9 million (in \$2017). This is equivalent to a cost of -\$3.9 (in \$2017) per metric ton of avoided carbon.

The Net Present Cost (NPC) of investing in enough utility-scale solar to reduce  $CO_2$  emissions in Georgia by 1 MT  $CO_2$  would be -\$3.9 million (in 2017\$), or -\$3.9 per metric ton of avoided carbon.

Although a net savings is encouraging, it is greatly dependent on the PPA.

Changing the PPA assumption to \$33.49/MWh (4.3% decrease) results in the elimination of this net benefit.

Large-scale solar would yield further benefits to utilities in scenarios where carbon taxes are implemented.

# Sizeable Increase in Utility Resource Costs Prior to Revenues from Carbon Dividends



Under the baseline forecast, utility costs will increase approximately \$97 million by 2030.

The achievable potential increases these costs by \$792 million in 2030, equal to \$70.71 per ton of avoided CO2. After a \$10/ton carbon tax is applied, this is equivalent to \$680 million or \$60.71 per ton avoided in 2030.

The larger technical potential increases these costs by \$1.22 billion in 2030, equal to \$56.98 per ton of avoided CO2. After a \$15/ton carbon tax is applied, this is equivalent to \$898.85 million or \$41.98 per ton avoided in 2030.

### Solar Farms & Community Solar

### **Electric Vehicle**

 Solar fields enable EVs to lower their CO<sub>2</sub> emissions.

### Retrofitting

 With lots of solar fields, retrofitting buildings saves less carbon.

## Afforestation & Silvopasture

 New solar fields would occupy lands that otherwise could be used for growing trees or crops.



### **Stakeholder Analysis of Lage-Scale Solar**



# Challenges and Possible Initiatives for Lage-Scale Solar in Georgia





### CONCLUSIONS



- Solar farms and community solar have the potential to significantly reduce CO<sub>2</sub> emissions in Georgia by 2030
- Realizing the potential for utility solar could provide needed jobs and wealth to Georgia communities
- Air quality throughout the state would be improved, with significant associated public health benefits
- Ecosystem impacts of large solar fields need to be addressed appropriately to ensure prime agricultural land is not occupied















Corresponding author: Dr. Marilyn A. Brown Interim Chair, School of Public Policy Georgia Institute of Technology Email: mbrown9@gatech.edu Phone: 404-385-0303 Climate and Energy Policy Lab: <u>www.cepl.gatech.edu</u>

GEORGIA





Georgia Tech



EMORY UNIVERSITY



