

Might the large-scale PV power generation be reached in China? A grid parity combined with techno-economic analysis

Hongyang Zou, Huibin Du*, Marilyn A. Brown

College of Management and Economics, Tianjin University, Tianjin 300072, China

School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA

Outline

I. Introduction

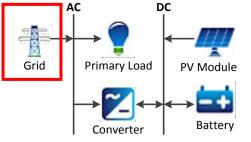
II. Construction and parameter description

III. Techno-economic evaluation

IV. Grid parity estimation based on learning curve

V. Conclusions and policy implications

I. Introduction


- Pressure of carbon reduction: The electricity generated from renewable energy will be reached at 9% in 2020 in the energy planning of National Energy Administration of China; But in 2013, this percentage was only 2.8%.
- The new-added installed capacity of PV solar in China: up to 10.6 GW in 2014, which accounted for about 20% of total new-added installed capacity in the world.
- The PV power generation: only 9, 000 GWh in 2013 accounting for 0.166% of the electricity generation of China. plans to be reached at 150,000GWh in 2020.
- Might this target be reached in 2020? When and What type of PV power generation (grid-connected or off-grid) can be applied in large scale? Where is more suitable to use PV power generation in China?

II. System construction and parameter description

Diesel

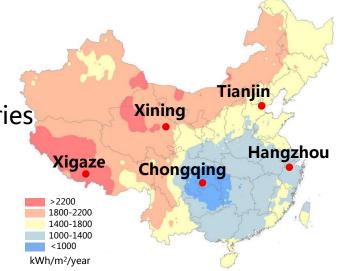
Generator

1. Grid-connected and off-grid PV power generation system

The structure of grid-connected PV system

2. PV systems in five cities

Solar radiation (five regions):


- More solar radiation than other countries with a similar latitude;
- distributed unevenly;

The structure of off-grid PV system

Primary Load

Converte

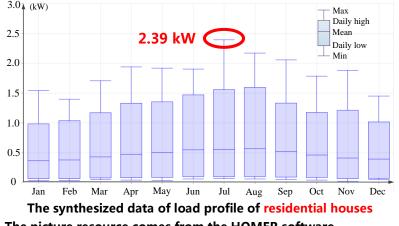
DC

PV Module

Battery

The distribution of China's solar radiation under the optimal slope

II. System construction and parameter description (cont'd)


3. Data and Parameter description

- HOMER (Hybrid Optimization of Multiple Energy Resources), a micro-grid software developed by the HOMER Energy LLC;
- Three main functions: simulation, optimization & sensitivity analysis.

The cost of each component in PV system							
Components	Capital	Replacement	0&M	Lifetime			
PV module (1kW)	3640	3640	36.4	20 years			
Converter (1kW)	800	800	0	15 years			
Battery	600	600	0	10 years			
Diesel generator (1kW)	1300	1300	0	15000 h			

at of each common and in DV eveter

Collected from: Annual Review and Outlook for China Solar PV industry, 2013; <u>www.solarzoom.com</u>; <u>www.1688.com</u>

The picture resource comes from the HOMER software

III. Techno-economic evaluation

1. Technical feasibility analysis

Objective function: *min* NPC (Net Present Cost)

s.t.

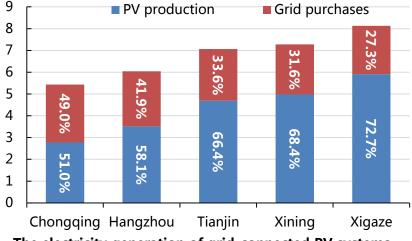
the electricity generated from each component in a PV system **>** the electricity demand

The optimal system configurations of grid-connected and off-grid PV systems in five cities

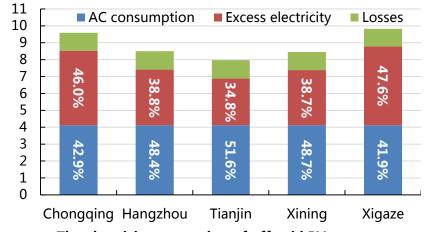
	Cities	PV capacity (kW)	Battery (quantity)	Converter capacity (kW)	Generator capacity (kW)
Grid- connected	All five cities	3	1	1	/
	Chongqing	10	30	3	5
	Hangzhou	7	35	3	5
Off-grid	Tianjin	5	35	3	5
	Xining	5	30	3	5
	Xigaze	5	25	3	5

III. Techno-economic evaluation (cont'd)

1. Technical feasibility analysis

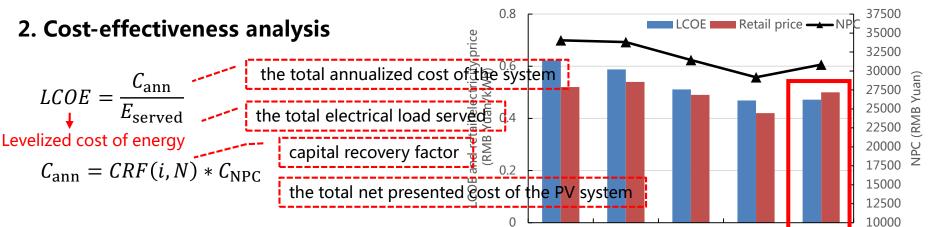

Grid-connected:

PV production: more than 50%; Xigaze: PV 5913 kWh (72.7%); Chongqing: PV 2771 kWh (51%).


Off-grid:

The same electricity consumption: 4113 kWh/year;

The excess electricity of Tianjin is the lowest; (the most cost-effective)



The electricity generation of grid-connected PV systems

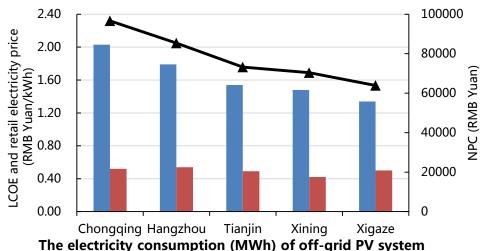
The electricity generation of off-grid PV systems

III. Techno-economic evaluation (cont'd)

Grid-connected:

- LCOE: 0.469-0.622 RMB Yuan/kWh;
- Xigaze: the only region, LCOE < retail price;

Off-grid:


- LCOE: 1.34-2.03 RMB Yuan/kWh;
- NPC: much more than grid-connected systems (more energy storage batteries).

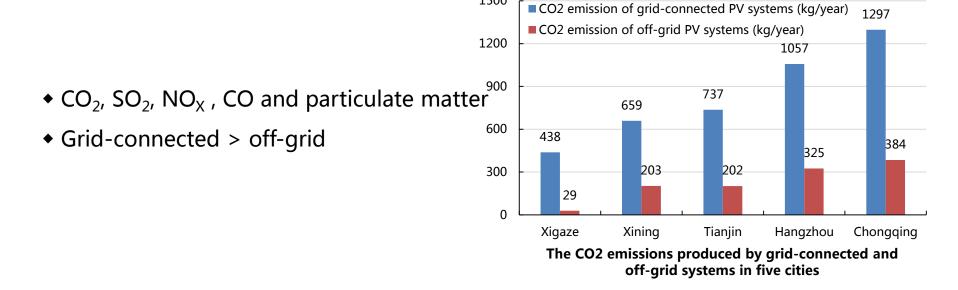
Tianjin The electricity generation (MWh) of grid-connected PV systems

Xinina

Xigaze

Chongging Hangzhou

III. Techno-economic evaluation (cont'd)


3. Environmental performance

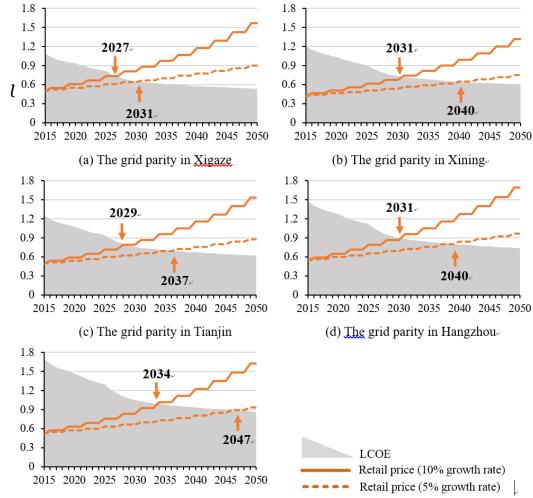
 $M_i = E_p * EF_i$

 M_i : the emissions of pollutant i (kg)

 E_p : the net grid purchases (kWh) or the consumption of fuel p (kg)

 EF_i : the emissions factor of pollutant i

1500


IV. Grid parity estimation based on learning curve

1. The learning curve in five cities

Model	Formula
One-factor	$SC = a \times (CC^{-b})$
Two-factor	$SC = a \times (CC^{-b}) \times (KS^{-c})$
Three-factor	$SC^{inflation} = a \times (CC^{-b}) \times (KS^{-c})Q^d$
Four-factor	SC = $a \times (CC^{-b}) \times (KS^{-c})Q^{d}(\prod_{i=1}^{n} p_{i}^{e^{i}})$

2. Grid parity in five cities

Grid parity in future 30 years; Xigaze: the first region (2027-2031).

(e) The grid parity in Chongqing.

Conclusions and policy implications

The LCOE of grid-connected PV systems is close to the retail electricity price (RMB Yuan/kWh).

	Chongqing	Hangzhou	Tianjin	Xining	Xigaze
LCOE	0.622	0.588	0.511	0.469	0.472
Retail price	0.520	0.540	0.489	0.420	0.500

Xigaze has the best solar radiation and the earliest grid parity (2027-2031).

Tianjin has the high retail electricity price and the average solar radiation.

The LCOE of off-grid PV systems will drop to be 0.536 -0.870 RMB Yuan/kWh in 2050.

Grid parity will be reached in the future 30 years.

1. The diversified development of the user market

(1) Courtyard house and single houses;(2) High-tech industrial parks.

2. Market deployment of PV power generation will vary across regions

(1) Remote areas in Tibei — off-grid PV system;
(2) North China — grid-connected PV system.

3. The subsidy-change strategy of PV power generation

China's benchmark price is reducing to 0.80, 0.88 & 0.98 RMB Yuan/kWh in 2017.

Thank You

Huibin Du:

duhuibin@tju.edu.cn