

Reset: A Forum and Celebration of Energy Transitions

Georgia Institute of Technology • Tech Square Research Building July 25, 2017 – 8:30 am - 5:00 pm

Reset: A Forum and Celebration of Energy Transitions

Connecting to WiFi:

Connect to GTvisitor Click: "Hotel users & Prepaid pass" Fill in your information Prepaid Pass: X527C

IGERT Energy Materials & Policy

<u>Agenda</u>

- 9:00 am Welcoming Remarks
- 10:15 Solar PV Systems
- 12:00 noon Lunch and Table Talks
- 1:00 pm Energy Storage for PV and EV Systems
- 1:45 pm Energy Efficiency and Solid State Lighting
- 3:00 pm Plenary Address
- 4:30 pm Conclusion

WELCOME

Dr. Kaye Husbands Fealing Professor Elsa Reichmanis

"Current Status of the Energy Transition" Professor Scott Valentine National University of Singapore

Current Status of the Energy Transition

Associate Prof. Scott V. Valentine, Assistant Dean (Research) Lee Kuan Yew School of Public Policy

National University of Singapore

On the surface - gloom

Source: BP Statistical Review of World Energy 2017

But trends tell another story...

Trends 1 & 2 Price Inflation and Market Volatility

Fuel stock	2015 Proven reserves	2015 Production	Reserves to Production
Oil (billion barrels)	1698	33.5	50.7
Natural Gas (trillion cbm)	187	3.5	52.8
Coal (million tonnes)	891531	7820	114
BP Statistical Review of World Energy 2017			

Fuel stock	1995 Proven reserves	Change	Next 20 years		
Oil (billion barrels)	1126	572 (51%)	Energy		
Natural Gas (trillion cbm)	120	67 (56%)	demand		
Coal (million tonnes)	1031610	-140079 (-14%)	+30%		

Oil Prices (\$/barrel)

Source: BP Statistical Review of World Energy 2017

Gas Prices (\$/mmBTU)

Source: BP Statistical Review of World Energy 2017

Coal Prices (US\$tonne)

Source: BP Statistical Review of World Energy 2017

Fossil fuels do the superman

Table 1.6 Fossil-fuel import prices by scenario

		New F	Policies Sc	enariō	Current	Policies S	icenario	4	50 Scenar	io	Low O	il Price Sc	enario
	2014	2020	2030	2040	202.0	2030	2040	2020	2030	2040	2020	2030	2040
Real terms (2014 prices)													
IEA crude oil imports (\$/barrel)	97	80	113	128	83	130	150	77	97	95	55	70	85
Natural gas (\$/MBtu)													
United States	4.4	4.7	6.2	7.5	4.7	6.3	7.8	4.5	5.7	5.9	4.7	6.2	7.5
Europe imports	9.3	7.8	11.2	12.4	8.1	12.5	13.8	7.5	9.4	8.9	5.9	8.9	11.4
Japan imports	16.2	11.0	13.0	14.1	11.4	14.9	16.0	10.7	11.8	11.1	8.8	10.7	12.4
OECD steam coal imports (\$/tonne)	78	94	102	108	99	115	123	80	79	77	88	97	102
Nominal terms													
IEA crude oil imports (\$/barrel)	97	89	153	210	92	176	246	85	131	156	61	95	140
Natural gas (\$/MBtu)													
United States	4.4	5.2	8.3	12.3	5.2	8.6	12.8	5.0	7.6	9.7	5.2	8.3	12.3
Europe imports	9.3	8.6	15.1	20.3	9.0	16.9	22.6	8.4	12.7	14.6	6.6	12.1	18.7
Japan imports	16.2	12.2	17.6	23.1	12.6	20.1	26.3	11.9	15.9	18.2	9.8	14.4	20.3
OECD steam coal imports (\$/tonne)	78	104	138	178	110	155	202	89	106	126	98	130	168

Notes: MBtu = million British thermal units. Gas prices are weighted averages expressed on a gross calorific-value basis. All prices are for bulk supplies exclusive of tax. The US price reflects the wholesale price prevailing on the domestic market. Nominal prices assume inflation of 1.9% per year from 2014.

Trend 3 The Strategic Need to Diversity

Trend 4 The Needs to Sever Links to Instability

Rank 🗘	Exporter 🗘	2016 Crude Oil Exports 🗧 🖨	% World Total 🗘
1.	Saudi Arabia	US\$136.2 billion	20.1%
2.	Russia	\$73.7 billion	10.9%
3.	Iraq	\$46.3 billion	6.8%
4.	Canada	\$39.5 billion	5.8%
5.	United Arab Emirates	\$38.9 billion	5.7%
6.	Kuwait	\$30.7 billion	4.5%
7.	Iran	\$29.1 billion	4.3%
8.	Nigeria	\$27 billion	4.0%
9.	Angola	\$25.2 billion	3.7%
10.	Norway	\$22.6 billion	3.3%

CIA World Factbook

Not Much Better for Natural Gas

RANK	COUNTRY	(CU M)
1	RUSSIA	184,500,000,000
2	QATAR	118,900,000,000
3	NORWAY	114,400,000,000
4	EUROPEAN UNION	93,750,000,000
5	CANADA	77,960,000,000
6	NETHERLANDS	53,650,000,000
7	TURKMENISTAN	45,790,000,000
8	UNITED STATES	42,870,000,000
9	ALGERIA	40,800,000,000
10	MALAYSIA	34,870,000,000
11	INDONESIA	31,780,000,000
12	AUSTRALIA	31,610,000,000
13	NIGERIA	25,000,000,000
14	GERMANY	22,270,000,000
15	BOLIVIA	17,860,000,000

CIA World Factbook (2014 data)

Trend 5 Improved Understanding of Environmental / Health Connections

China and India 2015 - Around 2.2 million deaths annually from air pollution (State of Global Air 2017) US annually:

- Vehicle emissions:
 - 58,000
 premature
 deaths
- Power plant emissions:
 - 54,000
 premature
 deaths

(Caiazzo et al., 2013)

Trend 6 Enhanced Evidence of CC Severity

- Hurricane Sandy (2012): US\$65 Billion
- 41 Extreme Weather events in 2013
 Damages over US\$1 billion each

- Before:
 - Benefit now; Pay later
- Now:
 - Pay now; Pay later

Trend 7 Disparate Approaches to Nuclear Power

- Before:
 - Installed nuclear power capacity growth +38%
 ~ +208% by 2030 (World Nuclear Association, 2008).
 - 60+ nations investigating adoption of nuclear power (Sovacool and Valentine, 2012).
- Post Fukushima:
 - Financial Woes: Westinghouse, Toshiba, Areva

Trend 8 Tech Progress and Renewable Energy

Figure 6: Levelized Cost of Electricity for New Power Plants

Figure 6.2. Levelized Cost of Electricity for New Power Plants, 2013. Source: World Resources Institute (WRI), Seeing & Believing (Washington, DC: WRI, October 2014). Note: AEO = US Energy Information Administration's Annual Energy Outlook; BNEF = Bloomberg New Energy Finance; DOE = US Department of Energy; LBNL = Lawrence Berkeley National Laboratory; PPA = power purchase agreements; PV = photovoltaic.

Trend 9 The Rise of Government and Market Support for Renewable Energy

Lee Kuan Yew School of Public Policy

Number of Renewable Energy Regulatory Incentives and Mandates, by Type, 2014-2016

Source: REN21 (REN21, 2017) Investment in Renewable Energy: 2006-2016

Critical Mass of Investment

Source: REN21 (REN21, 2017) Investment in Renewable Energy: 2006-2016

Trend 10: First mover advantages

Clean-tech sector - €4 trillion in sales by 2025

(Roland Berger Strategy Consultants, 2011).

Top 10 onshore wind turbine manufacturers

		Capacity	New-build		Capacity	New-build
Rank		commissioned	market share	Rank	commissioned	market share
2016	Manufacturer	in 2016 (GW)	in 2016 (%)	2015	in 2015 (GW)	in 2015 (%)
1	Vestas	8.7	16.5%	2	7.3	12.6%
21	GE	6.5	12.3%	3	5.9	10.2%
3↓	Goldwind	6.4	12.1%	1	7.8	13.5%
$4 \rightarrow$	Gamesa	3.7	7.0%	4	3.1	5.3%
51	Enercon	3.5	6.6%	6	3.0	5.2%
61	Nordex group	2.7	5.0%	unranked	unranked	unranked
7→	Guodian	2.2	4.2%	7	2.8	4.8%
8↓	Siemens	2.1	3.9%	4	3.1	5.3%
9↓	Ming Yang	1.96	3.7%	8	2.7	4.7%
9↓	Envision	1.94	3.7%	8	2.7	4.7%

Source: Bloomberg New Energy Finance

scott.valentine@nus.edu.sg

THANK YOU

"Envisioning Future Energy Technologies" Aaron Melda Tennessee Valley Authority

Where We Are Going

What Could the Future Look Like?

Economic growth offset by efficiencies drives flat load outlook

CAGR ~0.0%

CAGR +0.6%

Steady Decline Case

Technology enables incremental efficiencies and distributed solutions

CAGR -1.0%

Impact of DOE Standards Continues to Grow

Residential Use Impacted by Lighting Efficiencies

Lighting percent of average use is forecasted to be more than cut in half, from

> **13%** in 2005 to **6%** in 2025,

driven by codes and standards and economics

Plug-In Electric Vehicles (PEV) – TVA Snapshot

PEV's were introduced in 2010/2011 and 7 PEV models are available from various OEMs in the Valley (Nissan, Chevy, Ford, Tesla, BMW)

As of May 2016:

- About 5,400 PEVs have been registered in the TVA Service Territory
- PEVs = 0.2% of registrations and < 2% of market share
- About 3MW "diversified load at transformer" representing about 16 GWh annually

About 550,000 PEVs needed for 1% of TVA sales (25% market share over 5 years)

Renewable Product Demand

Seasonal Wind and Solar Shapes

Key Takeaways

- Current load outlook is flat to slightly declining
- Energy efficiency standards and technologies continue to evolve
- Substantial PEV adoption in the Valley is needed to impact load
- Meeting customer demand for renewables and attractive combination of low rates and carbon is a focus
- Future energy technologies needed to flatten loads and increase flexibility to optimize the future value proposition

Break

- Restrooms
- Snacks/Drinks
- 15 minutes

SOLAR PV SYSTEMS

Setting the stage by Georgia Tech NSF IGERT Faculty:

--Professor Dan Matisoff, School of Public Policy

--Professor Martha Grover, Chemical and Biomolecular Engineering

Research results presented by Georgia Tech NSF Fellows: *Materials and Systems:*

--Michael McBride, Chemical and Biomolecular Engineering

--Rebecca Hill, Chemistry and Biochemistry

--Matt Smith, Materials Science and Engineering

Policy and Economics:

--Ross Beppler, School of Public Policy

Solar Economics and Policy

Trends and Implications

Daniel Matisoff

Associate Professor

Global solar panel installations

Dropping Solar Costs

Price of a solar panel per watt

64,892 MW S101.05 \$120 70,000 60,000 100 50,000 80 40,000 60 30,000 40 **2 MEGAWATTS** 20,000 \$0.61 20 10,000 0 0 1.1 1.1 . . 1.1 1975 1980 1985 1990 1995 2000 2005 2010 2015*

IGERT Energy Materials & Policy

Median Installed Price

Panel costs vs. Balance of Systems

\$7

- Decreasing Panel Costs
- Efficiencies in Balance of Systems
- Decreases in Soft Costs
- Price decreases have continued to decrease rapidly!

Competitiveness of Renewable Costs

			-				-	
Plant Type	Capacity Factor (%)	Levelized Capital Cost	Fixed O&M	Variable O&M (including fuel)	Transmission Investment	Total System LCOE	Levelized Tax Credit ²	Total LCOE including Tax Credit
Dispatchable Technologies								
Coal 30% with carbon sequestration ³				400000000000000000000000000000000000000	NB			
Coal 90% with carbon sequestration ³					NB			
Natural Gas-fired								
Conventional Combined Cycle	87	14.0	1.4	42.0	1.1	58.6	NA	58.6
Advanced Combined Cycle	87	14.0	1.3	37.5	1.0	53.8	NA	53.8
Advanced CC with CCS		++++			NB			
Conventional Combustion Turbine	30	36.8	6.6	54.3	3.0	100.7	NA	100.7
Advanced Combustion Turbine	30	22.8	2.6	58.8	3.0	87.1	NA	87.1
Advanced Nuclear	90	70.8	12.6	11.7	1.0	96.2	NA	96.2
Geothermal	90	29.2	13.3	0.0	1.5	44.0	-2.9	41.1
Biomass	83	47.2	15.2	34.2	1.2	97.7	NA	97.7
Non-Dispatchable Technologies								
Wind – Onshore	41	39.8	13.1	0.0	2.9	55.8	-11.6	44.3
Wind – Offshore					NB	, and the second se		
Solar PV ⁴	25	59.8	10.1	0.0	3.8	73.7	-15.6	58,1
Solar Thermal					NB			
Hydroelectric ⁵	60	54.1	3.1	5.2	1.5	63.9	NA	63.9

U.S. Capacity-Weighted¹ Average LCOE (2016 \$/MWh) for Plants Entering Service in 2022

IGERT Energy Materials & Policy

But despite Favorable prices, policy can Either help or hinder

≡ SECTIONS

HOME Q SEARCH

The New York Times

Rooftop Solar Dims Under Pressure From Utility Lobbyists

Counseled by Industry, Not Staff, E.P.A. Chief Is Off to a Blazing Start

Climate-Altering Gases Spiked in 2016, Federal Scientists Report

FEATURE Arks of the Apocalypse

matisoff

CLIMATE

Rooftop Solar Dims Under Pressure From Utility Lobbyists

Renewable energy

A world turned upside down

Wind and solar energy are disrupting a century-old model of providing electricity. What will replace it?

Forbes / Energy

JAN 30, 2015 @ 12:20 PM 15,932 @

Will Solar Cause A 'Death Spiral' For Utilities?

Are Electric Utilities in a Death Spiral?

ES SAVE SHARE COMMENT HH TEXT SIZE C PRINT

With Americans installing more solar panels, utilities are selling less electricity. But the utilities' costs haven't dropped, so prices per kilowatt hour are rising, which makes rooftop panels even more cost-competitive and further encourages the spread of solar power. The result of this and related trends, including increased energy efficiency nationwide, may be a "death spiral" for electric utilities, says the *Wall Street Journal*. U.S. electricity consumption in 2013 is expected to be **2% below** the peak in 2007.

Key Policy Issues

- Solar incentives
- 30% Federal Tax Credit
- Many state level incentives
- Net Metering Policies
- How to pay for distributed energy resources
- Impacts on rates and bills
- Implications for utility business model
- Renewable Portfolio Standards
- In the face of stagnant federal policy
- The Adoption and Diffusion of Innovative Technologies

And IGERT efforts have Supported Research to answer these questions

IGERT Energy Materials & Policy

Fig. 1. Average Value of Non-zero Incentive by Type and Year (\$/Watt).

Process-Structure-Property Relationships

Nils Persson, Michael McBride, Elsa Reichmanis, Martha Grover

Chemical & Biomolecular Engineering Georgia Institute of Technology Tuesday July 25th, 2017

Module Costs are Significant

Module Costs Need to be Reduced

Dye Sensitized Solar Cells

- Employ all sources of information available to extract knowledge
- Emphasis on process-structure relationship
- Apply manual text mining to the scientific literature
 - Give structure to unstructured data
 - What a Watson-style text miner would do in an ideal case
- Data extraction from figures for property values
- Enable better searching and filtering of literature results

Sumpter, B. G.; Vasudevan, R. K.; Potok, T.; Kalinin, S. V. "A Bridge for Accelerating Materials by Design," *Computational Materials* **2015**. Potyrailo, R.; Raja, K.; Stoewe, K.; Takeuchi, I; Chisholm, B.; Lam, H. "Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art," *ACS Combinatorial Science* **2011**.

Large area, flexible electronic devices

Roll-to-roll printing processes

The OFET

Field effect transistors (FETs) drive many electronics applications and provide a platform to study process-structure-property relationships.

Mobility (μ) is a model parameter fitted from electrical characterization that determines attainable switching frequencies in transistors.

Solution Processing

Johnson, C. E.; Gordon, M. P.; Boucher, D. S. "Rationalizing the Self-Assembly of Poly-(3-hexylthiophene) Using Solubility and Solvachromic 51 Parameters," *Journal of Polymer Science: Polymer Physics* **2015**.

The OFET Database

Material	Solution Treatment	Deposition	Post-Processing	Device Architecture	Characterization
Number Average Molecular Weight (M _n) Polydispersity (PDI) Regioregularity (RR)	Initial Concentration Solvents: - Volume Fractions - Boiling Point - Hansen Radius Aging Time/Temp. Sonication Time UV Irradiation Time Cooling Regimen	Substrate Treatment Deposition Method <u>Spin Coated:</u> - RPM - Time <u>Dip Coated:</u> - Dip Rate - Time <u>Blade Coated:</u> - Velocity - Temperature Film Thickness Environment (N ₂ /Air)	Annealing Time Annealing Temp. Film Thickness	Electrode Configuration Electrode Material Channel Length Channel Width	Mobility Mobility Regime Environment

Many process parameters influence mobility Reporting is generally incomplete *What can we learn?*

The OFET Database

Author/Year	Aiyar 2011	Bielecka 2011	Chang 2013	Park 2014	Verilhac 2006
Mn (kD)	24		40.3	24	27
Mw (kD)	47.7	65.5	91.5	47.7	60.8
PDI	2.0		2.27	2.0	2.25
R.R. (%)	93	96.6	92	92	98
Solvent	CHCl3	CHCl3	CHCl3	CHCl3	CHCl3
Init. Conc. (mg/mL)	4	10	5	3	2
Substrate Treatment					HMDS
Deposition Method	Spin-coated	Spin-coated	Spin-coated	Spin-coated	Spin-coated
Spin Rate (rpm)	1500	900	1500	2000	300
Spin Time (s)			60	60	30
Processing Environment	Air	Air	Air	N2	Air
Mobility Environment	Air	Vacuum	N2	Vacuum	N2
Mobility Regime	Linear	Saturation	Saturation	Linear	Saturation
Electrode Configuration	BGBC	BGBC	BGBC	BGBC	BGBC
Electrode Material	Au	Au	Au	Au	Au
Channel Length (µm)	50	10	50	200	20
Channel Width (mm)	2	10	2	0.5	9
Mobility (cm ² /Vs)	0.000202	0.00073	0.00423	0.005	0.0229

This study demonstrated the value of a searchable device data repository and the need for greater standardization.

Challenges

How to maintain such a database with *minimal effort from researchers*?

How to extract more quantitative knowledge when information is composed of *mixed data types*?

Who hosts and pays for the *data storage*?

Persson, N.; McBride, M.; Grover, M. A.; Reichmanis, E. Chemistry of Materials 2016, 29, 3–14.

	S_{full}	λ _c (nm)
Microfluidics + UV	0.79	886
Sonication + Aging	0.45	977
Sonication + Poor Solvent	0.20	434

Solvent-phobic, retracted fringe chains

Shish-kebab nuclei

Extended, interacting fringe chains

Visualization of Structural Parameters

Structure-Property Relationships

A general relationship emerged between fiber alignment and mobility.

A similar relationship was not found with UV-Vis and GIWAXS due to *buried raw data* and *changing models*.

A centralized database with *version-controlled analysis* could reveal more informative trends.

Note: All data is from the Reichmanis group.

Conclusions

- Centralized process-structureproperty databases enable high level materials knowledge extraction
- GTFiber automates fiber extraction and measurement from images
- Orientational order is fundamentally linked with mobility and fiber growth in P3HT-based transistors

GTFiber: gtfiber.github.io OFET Database: github.com/Imperssonator/OFET-Database

Acknowledgements

- Mike McBride
- Ping-Hsun Chu
- Dr. Nabil Kleinhenz
- Dr. Tony Fast
- Dr. Gang Wang
- Prof. Surya Kalidindi
- Kaylie Naghshpour
- Josh Rafshoon

Funding

- NSF CBET-1264555, "Morphology and Mobility Control for Functional Robust Flexible Electronics and Photovoltaics"
- NSF IGERT FLAMEL Traineeship
- GA Tech IMAT Fellowship

Thank you!

Transistor layout and thin film characterization

Atomic Force Microscopy (AFM) reveals fibrillar regions, their length and orientation.

Quantifying Orientational Order

Effect of deposition method on fiber orientation

If the solution can be oriented, it follows the expected radial flow profile.

Inter-fiber connectivity

Both local (λ_c) and global (S_{full}) orientational order influence charge transport. Local ordering promotes planarization of the P3HT backbone and inter-fiber connectivity, while global ordering reduces the number of grain boundaries charges must cross.

Introduction to Photovoltaic Technologies

Michael McBride Chemical & Biomolecular Engineering Tuesday, July 25th, 2017

A Plethora of PV Materials

Best Research-Cell Efficiencies

Solar Cell Technology Nodes

1st Generation: "Wafer Based" Monocrystalline silicon Polycrystalline Silicon

2nd Generation: "Thin Films" Copper Indium Gallium Selenide Cadmium Telluride Amorphous Silicon

3rd Generation: "Advanced Materials" Organic Photovoltaics (OPV) Perovskites Quantum Dot Solar Cells Dye Sensitized Solar Cells

Solar Cell Technology Nodes

1st Generation: "Wafer Based" Monocrystalline silicon Polycrystalline Silicon

2nd Generation: "Thin Films" Copper Indium Gallium Selenide Cadmium Telluride Amorphous Silicon

3rd Generation: "Advanced Materials" Organic Photovoltaics (OPV) Perovskites Quantum Dot Solar Cells Dye Sensitized Solar Cells

The Silicon Solar Cell

- Expensive processing cost Wasteful
 - ~50% of silicon material is lost during manufacturing
- Limited light absorbance
 - Band gap=1.1 eV
- Potential for higher balance of system costs (BOS)

Prevalence of Silicon PV Systems

History of technology matters

Prevalence of Silicon PV Systems

When a new technology emerges, society can deliberately control usage

As technology matures, society is modified itself by technology

> Social Determinism

Time **Technological** Momentum **Technological Determinism**

Tec

Solar Cell Technology Nodes

2nd Generation Devices Provide Opportunity for Cost Effective Production

		Efficiency (%)					
Gen.	Node	Theo. Max	Best R&D	Typical Module	Bottom-Up cost (2015\$/W)	Degradation Rate (%/yr)	EPBT (yrs)
1 st	C-Si	29	27.6	18	0.74	0.65	1.7-2.7
2 nd	CIGS	29	20.3	13	0.67	0.85	1.5-2.2
2 nd	CdTe	29	17.3	12	0.51	0.85	0.8-2.1
2 nd	a-Si	20	12.5	10	-	1.15	1.8-3.5

Health and Safety Concerns

Bone Damage

Cancer

Reproductive hormones

Regulated by:

Cadmium Telluride (CdTe)

EPA

-Clean Air Act -Toxic Substance Control Act -Water standards -Soil standards

OSHA -Exposure limits

Material Availability

Production & Prices

Tellurium Production and 200 Prices 300 250 150 Metric Tons 200 30 150 S 100 86 100 50 50 0 0 990 1993 9661 6661 2002 2005 2008 2011 2014 World Production Net Imports Price

Import Sources (2011–14): Canada, 21%; China, 16%; Belgium, 15%; Republic of Korea, 10%; and other, 38%. Import Sources (2011–14): Canada, 59%; China, 21%; Philippines, 9%; Belgium, 9%; and other, 2%

lia

Tec

Solar Cell Technology Nodes

New Product Development Cycles

Heliatek Raises \$90M From EU Investors for Roll-to-Roll Organic Solar Cells

A big bet that organic solar cells will finally reach economical mass production

by Eric Wesoff September 27, 2016

New Heliatek solar energy façade on ENGIE's research center

20.06.2017

Dresden, Germany – 30 June 2017 - Solar films manufactured by German company Heliatek have been installed on ENGIE Laborelec's building in Linkebeek. The HeliaFilm[®] organic films have been incorporated into the façade and windows and will enable the testing of new solar technology systems.

The energy sector is in rapid transition, meaning that in the future energy will no longer be generated and consumed in the way that it is today. Against this backdrop, in 2016 the ENGIE Group acquired a 6.6% stake in Heliatek, one of the world leaders in the production of organic photovoltaic (OPV) films. Together with Heliatek, ENGIE decided to retrofit the façades of the Group's research centre, ENGIE Laborelec, in Linkebeek, for a new project involving the installation of their HeliaFilms[®].

Solar active façade with HeliaFilm® at ENGIE labs

The Organic Photovoltaic Sandwich

Technical Issues with Organic Photovoltaics

- Degradation
 - Heat and moisture
- Low efficiency
 - Scale up feasibility
 - Material availability
 - Halogenated solvents

<u>Hybrid Organic–Inorganic</u> <u>Photovoltaics</u>

Rebecca Hill IGERT Review July 25, 2017

Hybrid Organic-Inorganic Photovoltaics (HOPV)

- Inorganic quantum dots used as sensitizer or in active layer: quantum dot solar cells
- Metal oxide used as electron transporting layer (ETL) with organic active layer or sensitizer: organic or <u>dye-</u> <u>sensitized solar cells</u>
- Hybrid organic-inorganic crystal used as the active layer: **perovskite solar cells**

(1) Romande Energie. EPFL News Mediacom. Lausanne, Switzerland May 11, 2013. (2) Adikaari, A. A. et al. IEEE J. Sel. Top. Qu. Electr. 2010, 16 (6), 1595–1606.

Progress in Photovoltaics

(1) Photovoltaic Research | NREL https://www.nrel.gov/pv/ (accessed Feb 17, 2017).

Progress in Photovoltaics

(1) Photovoltaic Research | NREL https://www.nrel.gov/pv/ (accessed Feb 17, 2017).

Dye sensitized solar cells

Dye-Sensitized Solar Cells

With modification from Hardin, B. E.; Snaith, H. J.; McGehee, M. D. Nature, 2012, 6, 162–169

Photovoltaic device parameters

Abbotto, A.; Manfredi, N. Dalton Trans. 2011, 40, 12421. http://www.mibsolar.mater.unimib.it/

Increasing Power Conversion Efficiency

	V _{oc} [∨]	<i>J_{sc}</i> [mAcm⁻²]	FF	η [%]
Theoretical (λ _{onset} = 940 nm)	0.92	30.8	0.73	20
SM315	0.91	18.1	0.78	13

 $\begin{array}{c} C_{0}H_{13}O\\ C_{0}H_{13}O\\ C_{0}H_{13}O\\ C_{0}H_{13}O\\ C_{0}H_{13}O\\ C_{0}H_{13}O\\ C_{0}H_{13}O\\ C_{0}H_{17}O\\ C_{0}H_{1$

SM315, Feb 2014

- Red-shifted absorption onset
- Increased Jsc
- Decreased recombination

[1].

Squaraine sensitizers for DSSCs

(1) Shi, Y. et al. Angew. Chem., Int. Ed. 2011, 50, 6619.

Examining the Effect of the Donor

Examining the Effect of the Donor

Examining an Out-of-plane End Group

Examining an Out-of-plane End Group

Georgia

Technolog

Out-of-plane Groups and the π -bridge

Out-of-plane Groups and the π -bridge

Future challenges

• Understand origin of low fill factor and open circuit voltage

	V _{oc} [V]	J _{sc} [mAcm⁻²]	FF	η [%]
Theoretical (λ _{onset} = 940 nm)	0.92	30.8	0.73	20.3
RH4	0.68	21.1	0.67	9.6

Lead Organo-halide Perovskite Solar Cells

- Perovskite used as active layer
 - Absorbs light to ~800 nm
 - Hole and electron transport

Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photon. Energy 2016, 6 (2), 022001.

Perovskite Solar Cell Architecture Evolution

Planar C₆₀ ETL

Fullerene-amine reactivity

Ramírez-Calera, I. J.; Meza-Laguna, V.; Gromovoy, T. Y.; Chávez-Uribe, M. I.; Basiuk, V. A.; Basiuk, E. V. Appl. Surf. Sci. 2015, 328, 45–62.

Evidence of bond formation

XPS N 1s peak (in navy blue), and deconvoluted peaks assigned to the protonated or hydrogen bonded amine, the primary amine, and the fullerene-bound amine.

Work function shift

UPS secondary electron edge cutoffs.

Solar cell device data

Acknowledgements

Georgia Tech

Prof. Seth R. Marder Dr. Timothy C. Parker Dr. Stephen Barlow Dr. Junxiang Zhang Iryna Davydenko Marder lab members

Prof. Jean-Luc Brédas Dr. Paul Winget Brédas lab members

Prof. Mostafa El-Sayed Dr. Xiongwu Kang Dr. Paul Szymanski Daniel O'Neil

EPFL <u>Prof. Anders Hagfeldt</u> Dr. M.K. Zakeeruddin

Dye-sensitized solar cells

University of Oxford <u>Prof. Henry Snaith</u> Dr. Nakita K. Noel Dr. Maximillian Hoerantner Konrad Wojciechowski POSTECH <u>Prof. Taiho Park</u> Seulki Song Kyoungwon Choi **EPFL** <u>Prof. Anders Hagfeldt</u> Dr. Juan-Pablo Correa-Baena Silver Hamill Turren-Cruz Wolfgang Tress

Perovskite solar cells

Squaraine Sensitizer Modifications

- Red-shift the main absorption band
- Influence dye-dye and dye-electrolyte interactions

Sample Squaraine Synthesis

SOLAR PV SYSTEMS DEGRADATION AND MITIGATION

- Power output loss in solar panels from field exposure
- Impact of climate on power loss
- Amorphous vs. silicon materials degradation
- Water cooling to mitigate power output losses (boosting)

Environmental Output losses

Dirty Solar Panels

Solar Panels Covered in Snow

Impact of Panel Temperature

Field studies show performance is temperature and technology dependent

Temperature Coefficients

Technology	TC of Power, γ (%/°C	
c-Si	-0.45	
µc-Si	-0.44	
a-Si (1-, 2- and 3-junction)	-0.24	
CdTe	-0.29	
CIGS	-0.47	

Cadmium Telluride (CdTe) thin film technology

Impact of Panel Temperature

IGERT Energy Materials & Policy

US Climate Zones

Climate Zones of the Continental United States

Climate Impact On Degradation

LCOE for Region and Technology

AMANZI SOLAR

Maximizing Solar Panel Performance

AMANZI SOLAR PROTOTYPE

SYSTEM BENEFITS

TEMPERATURE REDUCTION

2 PENDING PATENTS

THE POLICY IMPLICATIONS OF SOLAR PENETRATION

Ross Beppler IGERT Fellow – Public Policy

CREATING THE NEXT*

- 1. Solar Policy History
- 2. Solar impacts on rates and bills
- 3. The state of the debate on solar
- 4. Rate design goals (equity; efficiency; rate design)
- 5. What is the "Value of Solar"
- 6. Barriers
- 7. Recommendations and conclusions

WHAT IS DRIVING PV INSTALLATION?

- Until recently the growth in PV was largely policy driven (tax credits, renewable portfolio standards, net metering...)
- The price of PV has continued to decline to the point where some jurisdictions are approaching grid parity

Matisoff, Daniel C., and Erik P. Johnson. "The comparative effectiveness of residential solar incentives." *Energy Policy* 108 (2017): 44-54.

- In 2015 44 states had **net-metering** policies
- 22 states had renewable portfolio standards with solar or distributed generation provisions

UTILITY "DEATH SPIRAL"

- Fixed Cost Recovery Utilities argue that solar adopters are not paying for the grid services that they still use
- Even without net metering rooftop solar leads to an erosion of sales
- Coupled with flat load growth utilities may have to raise rates to recover costs

Georgia

IGERT FUNDED RESEARCH

CREATING THE NEXT[®]

Non-Participant Bill Changes

Partcipant Bill Changes

- Residential Bills
- Scom Bills
- C&I Bills

- Base Case (5% solar) non-participant impacts are minimal
- High Case (15% solar) significant cross-subsidies begin to develop

Johnson, E., Beppler, R., Blackburn, C., Staver, B., Brown, M., & Matisoff, D. (2017). Peak shifting and cross-class subsidization: The impacts of solar PV on changes in electricity costs. *Energy Policy*, *106*, 436-444.

POLICY OPTIONS

Goals: Economic efficiency, consumer equity, positive environmental and social impacts

- Retail Rate Design AMI provides the opportunity for more sophisticated rate designs which allow costs to be recovered outside the traditional volumetric (per kWh) charges
 - Increased Fixed Charges
 - Residential Demand Charges
 - Minimum Bill
 - Time-of- Use Pricing
 - Alternative Class for Distributed Energy Resource Adopters
 - Value of Resource Methodologies
- Alternative Business Models
 - Community Solar
 - Third-Party Ownership/Financing
 - Rooftop Rental

A: Well... It depends.

- Value of Solar to who? Solar adopters, utility ratepayers, utility, society at large?
- What Benefits and Costs will be considered?
- What techniques are used, assumptions made, and forecasts applied?

Component	Utility Scale	Distributed	
		Generation	
Avoided Fuel and Purchased Power Costs	Benefit	Benefit	
Avoided Generation VO&M Costs	Benefit	Benefit	
Avoided Environmental Compliance Costs	Benefit	Benefit	
Deferred Generation Capacity Costs	Benefit	Benefit	
Deferred Generation FO&M Costs	Benefit	Benefit	
Reduced Transmission Losses (Energy Related)	Benefit	Benefit	
Reduced Transmission Losses (Capacity Related)	Case by Case	Benefit	
Deferred Transmission Investment	Case by Case	Benefit	
Reduced Distribution Losses (Energy Related)	N/A	Case by Case	
Distribution Operations Costs	N/A	Cost	
Generation Remix	Cost or Benefit	Cost or Benefit	
Ancillary Services – Reactive Supply and Voltage	N/A	Cost	
Control			
Ancillary Services – Regulation	Cost	Cost	
Support Capacity (Flexible Reserves)	Cost	Cost	
Bottom Out Costs	Cost	Cost	

Source: A Framework for Determining The Costs and Benefits of Renewable Resources in Georgia

Q: IF WE AGREE ON ALL THAT WILL WE KNOW THE VALUE OF SOLAR?

A: Well... It still depends.

- Where is the solar being installed (geographically and electrically)?
- How much solar is already installed?
- Do the solar installations use smart inverters?
- What other DERs does the solar interact with it?
- How's the weather?
- What time is it?

Smith, Jeff, et al. "Time and Location: What Matters Most When Valuing Distributed Energy Resources." *IEEE Power and Energy Magazine* 15.2 (2017): 29-39.

CREATING THE NEXT*

COST-REFLECTIVE RATES

An Economist's Dream:

"Implement efficient rates which reflect both short- and long-run marginal costs and provide clear and separate price signals for the electricity commodity and delivery services, which have very different cost structures. Ensuring that customers receive price signals that reflect the costs that their use imposes on the different parts of the system will result in more optimal use patterns. More cost-reflective rates reduce system costs: Having electricity prices reflect costs gives customers the ability to reduce their electricity bills by changing their use patterns and investing in DERs. These responses will decrease overall costs in the long run."

Convery, Frank J., Kristina Mohlin, and Elisheba Spiller. "Policy Brief—Designing Electric Utility Rates: Insights on Achieving Efficiency, Equity, and Environmental Goals." *Review of Environmental Economics and Policy* 11.1 (2017): 156-164.

BARRIERS

- Path Dependence Particularly in regulated markets pricing for service would be a huge transition.
- Technology need near complete deployment of AMI before wide-spread optout cost-of-service rates
- **Computational and Communication Capacity** do all utilities have the capacity to manage data flows, information storage, and cyber security concerns
- Residential Acceptance historically, consumers aren't great at understanding electricity rates or responding to price signals
- **Political** Can rate redesign get through the public service commissions?
 - Competing interest groups include large utility lobbies, solar installers, environmental groups, solar adopters...
- Institutional How to address legacy plants such as nuclear which may no longer be cost competitive in the services they provide

GOING FORWARD

Recommendations:

- Better data collection and sharing practices
- Holistic approach to electric sector changes
- Pilot programs
- Local policy variability
- Align utility incentives with customer and societal needs

Drivers of new utility business models. (source: AEEI)

CONCLUSIONS

- More questions than answers
- This is an area in which interdisciplinary collaboration is crucial. The issue is technically complex, involves many disciplines, and engenders concerns for both efficiency and equity.
- The IGERT program at Georgia Tech provided the resources and opportunities to work on these issues.
- There remains a lot of work to do.
- Questions?

DISCUSSION OF MORNING TALKS

Mike Bush Manager, Generation Planning and Development Southern Company

Lunch with Table Topics and Leaders

"Fast-tracking the Energy Transition" Dr. Benjamin Sovacool University of Sussex

Fast-tracking the energy transition

Invited Plenary Address to the "Reset: A Forum And Celebration Of Energy Transitions" Conference, Georgia Institute of Technology, Atlanta, United States, July 25, 2017

University of Sussex The Sussex Energy Group Benjamin K. Sovacool, Ph.D Professor of Energy Policy Director of the Sussex Energy Group Director of the Center on Innovation and Energy Demand

Roadmap

- Data sources
- Conceptualizing energy transitions
- Rethinking transitions (the case for "fasttracked" transitions, or "deliberate diffusion" or "accelerated transformation")
- Conclusion

Data sources

Energy Research & Social Science 13 (2016) 202-215

Contents lists available at ScienceDirect

Energy Research & Social Science

journal homepage: www.elsevier.com/locate/erss

Original research article

How long will it take? Conceptualizing the temporal dynamics of energy transitions[☆]

Benjamin K. Sovacool^{a,b,*}

Conceptualizing energy transitions

- What is an energy transition?
 - Change in fuel supply?
 - Shift in technologies that exploit fuel, e.g. prime movers end use devices?
 - Switch from an economic or regulatory system (e.g. Cuba)?
 - Time taken for sociotechnical diffusion?
 - o At what scale?

_	- 1 m		-
	3-1	-	-
	110		

Five definitions of energy transitions,

Definition	Source
A change in fuels (e.g., from wood to coal or coal to oil) and their associated technologies (e.g., from steam engines to internal combustion engines)	Hirsh and Jones [22]
Shifts in the fuel source for energy production and the technologies used to exploit that fuel	Miller et al. [23]
A particularly significant set of changes to the patterns of energy use in a society, potentially affecting resources, carriers, converters, and services	O'Connor [24]
The switch from an economic system dependent on one or a series of energy sources and technologies to another	Fouquet and Pearson [25]
The time that elapses between the introduction of a new primary energy source, or prime mover, and its rise to claiming a substantial share of the overall market	Smil [26]

Conceptualizing energy transitions

- What does the academic literature say?
- *"Energy transitions have"* been, and will continue to be, inherently prolonged affairs, particularly so in large nations whose high levels of per capita energy use and whose massive an expensive infrastructures make it impossible to great. accelerate their progress even if we were to resort to some highly effective interventions ..."

2		1.5	2		
г	'n	ь	1.		2
L	c	υ		-	~

The differences in timing and speed of energy transitions in Europe.

Phase-out traditional renewables phase-in coa	l:	Diffusion midpoint	Diffusion speed
Core	England	1736	160
Rim	Germany	1857	102
	France	1870	107
	Netherlands	1873	105
Periphery	Spain	1919	111
	Sweden	1922	96
	Italy	1919	98
	Portugal	1949	135
Phase-out coal phase-in	oil/gas/electricity;		
Core	Portugal	1966	47
	Italy	1960	65
	Sweden	1963	67
Rim	Spain	1975	69
	Netherlands	1962	62
	France	1972	65
Periphery	Germany	1984	50
	England	1979	67

Conceptualizing energy transitions

Centre on

Innovation and Energy Demand

Conceptualizing energy transitions

Energy Research & Social Science 22 (2016) 18-25

Short communication

Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions

Conceptualizing energy transitions

Fig. 1. Durations of formative phases for energy technologies are at a decadal scale [4]. Note: Ranges refer to alternative definitions for the start and end points of formative phases, and so capture measurement uncertainties.

Fig. 2. Diffusion speeds accelerate as technologies diffuse spatially. Notes: Bars show durations of diffusion measured by cumulative total capacity installed, with historical data fitted via a logistic growth curve and the diffusion duration expressed as Δ t in years, 'Core' is typically within the OECD; 'Rim' is typically Asian countries; 'Periphery' is typically other world regions. For details and data, see: [42,3].

Conceptualizing energy transitions

Diffusion durations scale with market size. Notes: X-axis shows duration of diffusion (t) measured in time to grow from 10% to 90% of cumulative total capacity; y-axis shows extent of diffusion normalized for growth in system size. All data are for 'core' innovator markets. Round symbols denote end-use technologies; square technologies denote energy supply technologies; triangular symbol denotes general purpose technologies (steam engines). Arrows show illustrative examples of system of systems (refineries describing the rise of multiple oil uses across all sectors, cars describing the concurrent growth of passenger cars, roads, and suburbs, and steam engines are a proxy of the growth of all coal-related technologies in the 19th century). Arrows also highlight examples of single technologies diffusing into existing systems substituting existing technologies (nuclear power, compact fluorescent light bulbs).

Some peculiarities

- Diffusion thresholds: what % constitutes a transition (5%, 10%, 25%, 50%)?
- Co-evolution: one isolated technology or the seamless web (e.g. mimicry plus rail and telegraph and EVs)?

Fig. 1. Growth of Infrastructures in the United States as a Percentage of their Maximum Network Size,

• Unit of analysis: big oil or smaller changes in ICEs, steam engines on ships, oil lamps, oil heating boilers and furnaces?

Rethinking transitions: Can they be fasttracked?

- We have seen at least five fast transitions in terms of energy end-use and prime movers
- Examples of many rapid national-scale transitions in energy supply also populate the historical record

Table 4

Overview of rapid energy transitions,

Country	Technology/fuel	Market or sector	Period of transition	Number of years from 1 to 25% market share	Approximate size (population affected in millions of people)
Sweden	Energy-efficient ballasts	Commercial buildings	1991-2000	7	2.3
China	Improved cookstoves	Rural households	1983-1998	8	592
Indonesia	Liquefied petroleum gas stoves	Urban and rural households	2007-2010	3	216
Brazil	Flex-fuel vehicles	New automobile sales	2004-2009	1	2
United States	Air conditioning	Urban and rural households	1947-1970	16	52.8
Kuwait	Crude oil and electricity	National energy supply	1946-1955	2	0.28
Netherlands	Natural gas	National energy supply	1959-1971	10	11.5
France	Nuclear electricity	Electricity	1974-1982	11	72.8
Denmark	Combined heat and power	Electricity and heating	1976-1981	3	5.1
Canada (Ontario) ^a	Coal	Electricity	2003-2014	11	13

^a The Ontario case study is the inverse, showing how quickly a province went from 25% coal supply to zero.

Figure designed by Gert Jan Kramer, used with permission

Energy Research & Social Science 22 (2016) 13-17

Short communication

The pace of governed energy transitions: Agency, international dynamics and the global Paris agreement accelerating decarbonisation processes?

Florian Kern^{a,*}, Karoline S. Rogge^{a,b}

- Historic energy transitions have not been consciously governed, whereas today a wide variety of actors is engaged in active attempts to govern the transition towards low carbon energy systems
- International innovation dynamics can work in favor of speeding up the global low-carbon transition.
- The 2015 Paris agreement demonstrates a global commitment to move towards a low carbon economy for the first time

Rethinking transitions: electricity, heat, and buildings

Rethinking transitions: transport fuel

Fig. 11. Nordic Carbon Dioxide Emissions by Country, 2010-2050.

CCS utilization by 2050:

Centre on

Innovation and Energy Demand

Energy Policy 102 (2017) 569-582

Contestation, contingency, and justice in the Nordic low-carbon energy transition

Benjamin K. Sovacool^{a,b,*}

Table 3

Cumulative Nordic Investments for Decarbonization by Sector, 2016–2050. Source: Modified from International Energy Agency and Nordic Energy Research, Nordic Energy Technology Perspectives 2016 (Paris: OECD, 2016). Assumes the Carbon Neutral Scenario.

Sector	\$ (USD Billion)
Energy-related investments in buildings	326
Industry	103
Transport: vehicles	1,674
Transport: infrastructure	1,121
Power: generation	197
Power: infrastructure	151
Total	3,572

- The total cost of the Nordic transition is roughly \$3.57 trillion
- It requires an additional investment of only \$333 billion
- This is less than 1% of cumulative GDP over the period
- If you monetize air pollution and fuel savings, it tips the economic equation firmly in favour of the transition

Rethinking transitions: Active phaseouts?

Accelerating low-carbon innovation: the role for phase-out policies

Policy Briefing 05

March 2017

1. Control policies

This group of policy instruments aim to reduce carbon emissions from specific technologies or sectors. This is either through market mechanisms (in the UK, examples include the carbon floor price and EU Emissions Trading System (ETS)) or regulation (such as mandatory energy efficiency requirements for appliances, vehicle emission standards, zero carbon buildings, and a ban of incandescent light bulbs).

2. Changing market rules

These are rules that are applied at a broader level than control policies and typically address a whole market, sector or system, or even cross several systems. One example is the UK's 80% carbon reduction target, as set out in the Climate Change Act 2008.

3. Reduced support for dominant carbon intensive technologies or practises

High-carbon technologies and practises may receive support in a number of forms. These should be acknowledged and then reduced and removed over time. Examples include subsidies or tax exemptions.

4. Ensuring a balanced debate by developing actors or networks in emerging sectors

Incumbent industries can have a strong influence on policy decisions, whereas emerging innovations are unlikely to have well developed and influential networks. This imbalance can be addressed by creating new committees or networks involving actors mainly supporting low- and zerocarbon innovations in order to ensure incumbents are not given unfair weight in policy making processes.

Changes in demand preferences, demand "peaks?"

Global Oil Demand Growth – The End Is Nigh 26 March 2013

Citi Research

Global Oil Demand Growth – The End Is Nigh

Figure 2. Potential Natural Gas Substitution For Oil:-mb/d

Source: Citi Research

Source: Citi Research

A perspective from utilities and incumbents?

The energy transition is already happening?

¹ Bloomberg New Energy Finance; ² EPRI; ³ UBS; ⁴ U.S. Energy Information Administration; ⁵ GDF SUEZ; ⁶ Renewable Energy World.com; ⁷ Seia.org; ⁸ IIE; ⁹ Telefonica

* Enables multiple homeowners to participate in the same metering system and share the output from a single facility that is not physically connected to their property or meter

67 STARTUPS MAKING YOUR HOME SMARTER

Shifts in business models and value creation alongside technology

Trends other r	pushing down the cost of solar, enewables and energy efficiency	Examples	
(*/?) (*)	Increasing technical innovation	New battery chemistriesNew solar PV technologies	
0	Synergistic solutions increasing the value of renewables	Solar PV + battery storageIT and storage for peak shaving	
مهمی	Data and internet of things increasing integration	SensorsPredictive softwareDemand response automation	
† ‡	Innovative business models increasing customer bases	No up front costsFunnel analysisValue beyond energy	
\$	Innovative financing reducing cost of capital	Third-party financingGreen bondsYieldCos	

Concluding remarks

- Whether an energy transition can occur quickly or slowly can depend in great deal about how it is defined, so always check sources, data, assumptions etc.
- Causes are complex: WW2 (France and Kuwait), rural famine (China), 1970s oil crises (Denmark, Brazil), demand (AC in USA)
- Future transitions could be driven by active governance (phase-outs), scarcity, and demand pressures, rather than supply, markets, or abundance
- The past need not be prologue; history can be instructive but not necessarily predictive

Contact Information

Benjamin K. Sovacool, Ph.D Professor of Energy Policy University of Sussex Jubilee Building, Room 367 Falmer, East Sussex, BN1 9SL +44 1273 877128 B.Sovacool@sussex.ac.uk

ENERGY STORAGE FOR PV AND EV SYSTEMS

Setting the stage by Georgia Tech NSF IGERT Faculty: --Steve Usselman, *History, Technology and Society* --Matthew McDowell, *Mechanical Engineering* Research results presented by Georgia Tech NSF Fellows: *Materials and Systems* --Eric Tervo, *Mechanical Engineering Policy and Economics* --Wale Odukomaiya, *Mechanical Engineering* --Caroline Golin, *Vote Solar*

An Economic Analysis of Residential Photovoltaic Systems with Battery Storage in the United States

Presented by

Eric Tervo Ph.D. Candidate, G.W.W. School of Mechanical Engineering <u>eric.tervo@gatech.edu</u> July 25, 2017

In collaboration with

Kenechi Agbim, Alfred DeAngelis, Jeffrey Hernandez, Hye Kyung Kim, and Wale Odukomaiya

Motivation

http://www.neutek-energy.com.au/energy-management/platinum-battery

Excess PV generation during the day must be utilized to achieve low LCOEs

- Net or Bi-Directional Metering
- Battery Storage

Customer Credits for Monthly Net Excess Generation (NEG) Under Net Metering

Objectives

- Develop model to predict cost/performance
 of residential PV with battery storage –
 without bi-directional metering
 - Capture geographical variation in solar insolation and household load profiles
 - Define and predict a battery LCOE that can be compared against net- or bi-directional metering schemes

Model: System Performance

Model: System Finances

- Financing
 - 4%, 30 year home-equity loan
 - 20% down payment
- Taxes
 - Exempt (or negligible) property tax
 - Interest payments are tax-deductible (25% federal)
- Levelized Costs
 - 6% discount rate
 - 2% inflation
- Incentives
 - 30% investment tax credit

Results: Impact of Using Batteries

For Atlanta, GA with 5 kW PV system and no battery

Forum and Celebration of Energy Transitions

Results: Impact of Using Batteries

For Atlanta, GA with 5 kW PV system and 7 kWh battery

Forum and Celebration of Energy Transitions

Results: LCOE & Self-Consumption Ratio

Results: LCOE & Self-Consumption Ratio

Results: LCOE for Batteries Alone

- 5 kW PV system, 7 kWh battery system
- LCOE above PV "production cost" can be compared to costs in net-metering schemes
- Georgia
 - 0.054 \$/kWh raises SCR from 71% to 91%
- Massachussetts
 - 0.076 \$/kWh raises SCR from 60% to 85%

Conclusions

- Created detailed, flexible model to analyze residential PV and battery systems
- Batteries can effectively utilize excess PV generation
- For larger PV installations (> 6 kW), battery systems can lower the LCOE
- Created cost metric to compare to net-metering policies
- Caveat: Despite promise, not grid competitive yet

Thank you!

Drs. Marilyn Brown, Samuel Graham, and Valerie Thomas

My Co-Authors

ENERGY STORAGE FOR PV AND EV SYSTEMS

Setting the stage by Georgia Tech NSF IGERT Faculty: --Professor Gleb Yushin, *Materials Science and Engineering* --Steve Usselman, *History, Technology and Society*

Research results presented by Georgia Tech NSF Fellows: *Materials and Systems* --Professor Eric Tervo, *Mechanical Engineering Policy and Economics* --Caroline Golin, *Vote Solar* --Wale Odukomaiya, *Mechanical Engineering*

The Value of Energy Storage in Buildings

Wale Odukomaiya

PhD Candidate

G.W. Woodruff School of Mechanical Engineering

Energy and Transportation Science Division, Oak Ridge National Laboratory

07/25/2017

Talk Outline

- Overview of the GLIDES energy storage technology
- Motivation for this work
- Cost model (buildings use-case)
- Results
- Conclusions and future work

Georgia The GLIDES concept

Objective: Develop a unique, low-cost, high round trip efficiency storage technology for a) small scale building applications b) large scale modular pump hydro storage.

IGERT

Energy Materials

& Policy

Key advantages						
Simple, low cost	Dispatchable, scaleable					
Accepts heat and/or electricity as inputs	Decouples power/energy storage capacity					
High round-trip efficiency	Terrain independent					

IGERT

Energy Materials & Policy

- Utility companies charge buildings with high power draws a monthly demand charge (based on the highest draw sustained for a certain length of time, usually 15 minutes).
- Demand charge and energy charge vary throughout the day (highest during peak periods).
- Storage can provide value by reducing peak draw and shifting time of use.
- Question: At what storage cost (\$/kWh) does investment make sense, based on resulting savings?

ES for Buildings

- Study:
 - Determine target storage system cost (\$/kWh) based on electric utility bill savings resulting from peak reduction and time-of-use shifting.
 - Use EnergyPlus and DOE Large Office reference building as case study.
 - Optimization model to determine when to charge/discharge storage to maximize savings.

DOE E+ Large Office reference building (498, 600 ft²)

ES for Buildings

- Optimization model:
 - Built using MATLAB optimization toolbox
 - Building load in 15 minute timesteps (output from E+) is fed in.
 - Storage is modeled as a load additional to building load (positive when charging, negative when discharging).

Total consumption = storage consumption $\cdot \eta$ + building consumption Cost = energy charge \cdot total kWh + demand charge \cdot maximum power draw Forum and Celebration of Energy Transitions Georgia Case Study – Los Angeles

Power kW Stora

-								
Sample daily power demand profile								
1200	•	-	• 					
ge time, h	<u>Cost without, \$</u>	<u>Cost with, \$</u>	Annual savings, \$	Savings, \$/kW	/ Savings, \$/kWh			

IGERT

Energy Materials & Policy

	FOWEI, KW	Storage time, II		<u>COSt With, 5</u>	Alliual Savings, 7	<u>Javings, 2/ Kvv</u>	<u>Javings, 7/ Kvvn</u>
_	1_00	1	2.82E+05	_ 2.66E+05_	1.58E+04	157_5	157_5
	100	2	2.82E+05	2.27E+05	5.48E+04	548.2	274.1
	100	4	2.82E+05	2.27E+05	5.47E+04	546.6	136.6
	100	6	2.82E+05	2.26E+05	5.65E+04	564.9	94.1
	100	8	2.82E+05	2.25E+05	5.67E+04	567.3	70.9
	1000	2	2.82E+05	2.25E+05	5.72E+04	57.2	28.6
	1000	4	2.82E+05	2.21E+05	6.11E+04	61	15.2
	1000	6	2.82E+05	2.20E+05	6.18E+04	61.8	10.3
	1000	8	2.82E+05	2.17E+05	6.50E+04	64.9	8.1
	1800	2	2.82E+05	2.21E+05	6.11E+04	33.9	16.9
	1800	4	2.82E+05	2.19E+05	6.28E+04	34.8	8.7
	1800	6	2.82E+05	2.18E+05	6.39E+04	35.4	5.9
	1800	8	2.82E+05	2.16E+05	6.61E+04	36.7	4.5

Cost savings for various system sizes and storage times

		Hour o	of Day		
0	5	10	15	20	25

Georgia Case Study – Los Angeles Lerry Materials & Policy

- Estimating target initial capital cost:
 - Calculate present value of annual savings over target payback period

$$PV = C\left[\frac{1 - (1+i)^{-n}}{i}\right]$$

Payback time, yrs	Target cost, \$/kWh
1	263.56
2	516.98
5	1220.24
10	2223.20

* *i* = 4% interest rate assumed

	Capacity, kW	Capacity factor, kW/kW	Storage time, h	Annual savings, \$/kWh
Los Angeles	100	0.057	2	274.1
Las Vegas	100	0.051	1	270.9
Honolulu	100	0.052	1	123.9
Anchorage	50	0.033	1	57.8

- Stand-alone, 'behind the meter' storage can provide value in certain markets.
- Can afford to spend generous amounts on storage in some cases, depending on desired payback period.
- Small storage capacity (relative to peak building load) and storage times provide highest value.
- Next steps:
 - Expand study to include more locations, building sizes, and building types.

Thank You

Infrared thermal image of GLIDES prototype storage vessels during charging

National Laboratory

The Future of Solar + Storage is Non-Wires Alternatives

VOTE SOLAR

Forum and Celebration of Energy Transitions

Caroline Golin, Regulatory Director

Distributed Energy Resources (DER) as Non-Wire Alternatives (NWAs)

- Using DERs as non-traditional investments to defer or replace the need for specific equipment upgrades or replacements in the Transmission and Distribution (T&D) system.
- Recognizing the current and **future role of DERs** in the distribution planning process.
- Not just including DER growth in Distributed Resource Planning but utilizing DERs to serve grid needs
- Determining the 'right' business and regulatory model

- impacts of future energy efficiency programs, codes and standards
- impacts of future time dependent rates (load modifying demand response)
- impacts of future behind the meter distributed generation (primarily PV)
- impacts of future electric vehicle adoption

VOTE SOLAR

4

- Data is imperative at every stage
- Getting the Value Right will set a better market and outcome for utility

3.Joint Utilities of New York, Supplemental Distributed System Implementation Plans (SDSIP) Final, 2016. http://jointutilitiesofny.org/wp-content/uploads/2016/10/3A80BFC9-CBD4-4DFD-AE62-831271013816.pdf 4.PG&E, SDGE, SoCal Edison. IDER Incentive Pilots DPAG Meeting # 2. Joint IOU Presentation Distribution Planning Process & Proposed Distribution Investment Deferral Framework March 16, 2017

Pairing Solar + Storage to serve as a grid asset.

Critical in advancing the market!

http://ngrid.maps.arcgis.com/apps/MapSeries/index. html?appid=4c8cfd75800b469abb8febca4d5dab59&folderid=8 a8a74bf834613a04c19a68eefb43b.

What do we need to utilize DERs as NWAs?

- Strong Distributed Resource Planning (DRP) Process, including thirdparty providers and detailed forecasting/mapping of DERs on the system
- Develop integrated distribution resource planning framework wherein distributed energy resources are explicitly considered as resource options in the T&D Planning Process.
- Evaluation of **DER locational net benefits** versus traditional infrastructure upgrades or resources
- Strong Request for Proposal Process (RFP) that allows for all technologies to compete to service a specific grid need

Questions

7

7/24/17

ENERGY EFFICIENCY AND SOLID STATE LIGHTING

Setting the stage by Georgia Tech NSF IGERT Faculty: --Professor Bernard Kippelen, Electrical and Computer Engineering

--Professor Valerie Thomas, Industrial and Systems Engineering

Research results presented by Georgia Tech NSF Fellows: Materials and Systems --Ryan Murphy, Materials Science and Engineering, Policy and Economics --Mallory Flowers, School of Public Policy

Energy Efficiency and Solid-State Lighting: An introduction

Bernard Kippelen

Joseph M. Pettit Professor in Electrical and Computer Engineering Director, Center for Organic Photonics and Electronics

> kippelen@gatech.edu 404 385-5163

Legacy technology

G0 Watts

900 lumens

🖵 15 lm/W

🛛 1,500 h

...see you in the museum.

Innovation

Innovation drivers

Georgia Tech

INORGANIC SEMICONDUCTORS Novel compound semiconductors grown by MOVCD or MBE (e.g. GaN)

OLEDs

ORGANIC SEMICONDUCTORS

Processed over large area at room temperature. The future is flexible.

Georgia Performance comparison

Table 5-1. Performance Parameters for Lamps Considered in this Analysis

Characteristics	Incandescent	CFL	LED lamp – 2012	LED lamp – 2017
Power Consumption	60 watts	15 watts	12.5 watts	6.1 watts
Lumen Output	900 lumens	825 lumens	812 lumens	824 lumens
Efficacy	15 lm/W	55 lm/W	65 lm/W	134 lm/W
Lamp Lifetime	1500 hours	8000 hours	25,000 hours	40,000 hours
Total Lifetime Light Output	1.35 Mlm-hr	6.6 Mlm-hr	20.3 Mlm-hr*	33.0 Mlm-hr
Impacts Scalar	15.04	3.08	1.00	0.61

* In Part 1 of DOE's study (*Review of the Lifecycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps*), 20 megalumen-hours was selected as the functional unit for comparison of the energy use. In this study (Part 2), we use the same functional unit as a normalizing scalar to ensure the impacts are comparable.

Solid State Lighting (SSL)

"Solid-state lighting has contributed to more than \$2.8 billion in U.S. energy cost savings over the past 15 years, and further SSL technology advances will increase those savings even more in the years to come. By 2035, SSL could reduce national lighting electricity use by 75% -- which would equate to the total energy consumed by 45 million American homes today and could save American families and businesses \$50 billion annually, not to mention add jobs and boost the economy."

Georgia Beyond energy savings

IGERT Energy Materials & Policy

Figure 1-1. Life-Cycle Assessment Impacts of the Lamps Analyzed Relative to Incandescent

Energy Efficiency and Solid-State Lighting: An introduction

Valerie Thomas

Anderson Interface Professor in Industrial and Systems Engineering and Public Policy

> <u>vt34@gatech.edu</u> 404 385-7254

Japan Led Early Adoption Due to Prioritizing Energy Savings after Fukushima

7000

IGERT Energy Materials & Policy

China

10000

8000

6000

4000

2000

0

2014 2015

LED Replacement

2016 2017 2018

2019

2020

2021

Installed Units (M)

North America

Western Europe

EIA, 2016, Energy Star Summary of Lighting Programs

Incandescent Light Bulb Phase Outs Occurring Now

\geq	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	
Switzerland	\otimes										
Australia	0	>									
EU	1	00w 🚫	75W 🚫	60W	40W 8						
reland		0									
Brazil			8	>							
Phillipines			8	>							
JK				S							
United States				1	oow 🚫	75W 🚫	60W (S)	ũ.			
Japan					0						
Canada					0						
Taiwan					0						
ndia					0	1					
China					10	0W+ 🚫	6	w+ 🕥 🕽	10	W+ 🚫 🗵	
South Korea						8	>			-	
Malaysia						12	N	8			

Global Phase Out of Incandescent Bulbs, Combined with Declining LED Prices Will Trigger Next Phase of LED Lighting Adoption

Copyright © 2011 Veeco Instruments Inc. All Rights Reserved.

Source: LEDinside, PiperJaffray 10/2011, Morgan Stanley 9/14/2011

"Challenges of Solid State Lighting Adoption"

Ryan Murphy

School of Materials Science and Engineering

rjmurphy@gatech.edu

IGERT Energy Materials & Policy

<u>Outline</u>

- Advantages of LEDs
- Challenges of LEDs and LED Adoption
- New Technologies and Policies to Improve LED Adoption

A Reduction in Energy Consumption Does not

Have to Cost the Economy!

V2.1 Global GHG abatement cost curve beyond BAU - 2030

McKinsey & Company, Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve, 2010

Simple Estimations Show Huge Savings Over Traditional Incandescent Bulbs

	LED	Incandescent
Upfront cost	\$8	\$1
Energy	11 watts	60 watts
Lifetime	50,000	1,200
Power @ 6 hours per day	66 Wh/day	360 Wh/day
Cost per day @ 7 ¢ per kWh	0.46 ¢	2.52 ¢
Cost per year @ 7 ¢ per kWh	\$1.69	\$9.20

Assuming you have to replace the incandescent bulb at least once in the first year (avg lifetime 200 days), you break even after 291 days

Over the lifetime of a LED (~23 years) you save \$205

Cathode

Light

Lighting has Become More Efficient but Also More Complicated

Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2000). S. Keeping, How the CIE Color Space is Used to Design Better LEDs. *Digi-Key Artic. Libr*.

Despite Their Low Overall Cost, LEDs have not Been as Widely Adopted as Expected

- High Up-Front Costs
- Lack of Clear Information
 - Lumens
 - Equivalent Watts vs. Watts Consumed
 - Color Temperature
- Color Stigmatization

As With Most Electronics, LED Cost will Decline as Demand and Production Increases

LED Lighting

<u>Setting Standards for Lightbulb Efficiencies</u> <u>can Increase LED Demand</u>

• In 2012, the *Energy Independence and Security Act of* 2007 began to require all light bulbs be at least 25% more efficient than traditional incandescent bulbs

Source: DOE

Forum and Celebration of Energy Transitions

ALLER OF

Clear Information is Key to Removing Stigma

lighting fa	ICTS CM	EverLE
Light Output (Lumens)		448
Watts		9.2
Lumens per Watt (Efficacy)		49
Color Accuracy Color Rendering Index (CRI)	ng fa	69
Light Color Correlated Color Temperature (CCT)	4994 (D	aylight)
Warm White Bright White	Dayli	ght
	4500K	6500K

All results are according to IESNA LM-79-2008: Approved Method for the Electrical and Photometric Testing of Solid-State Lighting. The U.S. Department of Energy (DOE) verifies product test data and results. Products qualified under the DOE ENERGY STAR* program have the ENERGY STAR mark on this label.

Visit www.lightingfacts.com for the Label Reference Guide.

Registration Number: DEPP-HRPM3E Model Number: LVL.2-2 Type: Shelf-mounted task lights

<u>The Difficulty of Improving the Color Accuracy</u> <u>of LEDs is Green Light</u>

Improving Phosphor Efficiency

Z. Xia, Q. Liu / Progress in Materials Science 84 (2016) 59–117 **Forum and Celebration of Energy Transitions**

<u>Smart Bulbs Can Help Displace Stigma and</u> <u>Further Reduce Energy Usage</u>

<u>Acknowledgements</u>

- Kera Allen, School of Public Policy
- Usayd Casewit, School of Public Policy
- Carolyn Buckley, School of Chemistry and Biochemistry
- NSF IGERT Program

Energy Efficiency & SSL in the Built Environment

- Traditional Policy Approaches
- Market-based Approaches

<u>Theory: Why Volunteer for Certification?</u>

- Market premiums from signaling green
- Improved employee/occupant experience
- Reduced utility bills

Practice: What is the Market Signal Worth?

Findings

- Certification incentivizes: Energy & Water Efficiency
- But is more limited at promoting: Indoor Environmental Quality (Low-VOC materials, Improved Ventilation, etc)

Provision of Public Goods (Habitat Protection, Stormwater Controls, Albedo Effects, etc)

Break

- Restrooms
- Snacks/Drinks
- 15 minutes

"The Third Industrial Revolution" *How it Might "Future-Proof" the Economy and Make It Much More Sustainable than Imagined* *****

John A. "Skip" Laitner Economic and Human Dimensions Research Associates and Russian Presidential Academy of National Economy

* In the spirit and tradition of Nobel Laureate and former Caltech physicist Richard Feynman, in his 1959 visionary talk, "There's Plenty of Room at the Bottom." See, http://www.its.caltech.edu/~feynman/plenty.html.

Not a Frivolous Assertion: Small Differences in Assumptions Can Make a Very Real Difference in Outcomes

"Ha ha ha, Biff. Guess what? After we go to the drugstore and the post office, I'm going to the vet's to get tutored."

Comparing Economic Projections and Actual Outcomes: United States 2005 to 2017

Source: Calculations by Laitner, using projections from the U.S. Energy Information Administration and other sources, May 2017.

Long-Term Trend in U.S. Real GDP Per Capita 1950-2015

Source: John A. "Skip" Laitner based on U.S. Energy Information Administration Data, May 2017

The Connection Between U.S. Energy Productivity and Per Capita Income (1950-2015)

Source: Calculations by John A. "Skip" Laitner using data from the U.S. Energy Information Administration

Exploring U.S. GDP Trends 1950-2015

Key Insight: The Energy Efficiency Resource Is Larger than Generally Believed or Understood

Georgia

Tech

Emerging evidence and insights from Europe

With a Bit of Added Context

In his best-selling books, my colleague Jeremy Rifkin notes that any time you have a coming together of a new form of communication with a new form of energy, you've laid the foundation for an industrial revolution:

- The First Industrial Revolution roughly corresponding to use of print media and coal/steam energy
- *The Second Industrial Revolution* telegraph and telephone coupled with the internal combustion engine and electricity generation
- And the emerging (but not at all guaranteed) Third Industrial Revolution? A buildout of infrastructure that relies on interactive communications and distributed clean energy technologies anchored by large-scale energy productivity

And Some Further Insights

- The economy-wide benefits and returns on the "Second Industrial Revolution" technologies and the larger public infrastructure are diminishing.
- A social and economic transformation is clearly needed

 driven by purposeful effort that includes both
 directed actions and targeted investments.
- Hence, the development of *Third Industrial Revolution* (*TIR*) *Strategic Plans* by Team Rifkin.
- And the more productive and efficient use of all resources, especially energy, must underpin this transformation over the next three decades.

Who Is Acting How on These Ideas?

- Both Luxembourg (population 576,000) and MRDH (Metropolitan Region Rotterdam/Den Haag 2.3 million). . .
- Working with Rifkin, and our partners at Navigant Consulting and Fraunhofer Institute, we crafted strategic plans (Roadmap Next Economy) that propose to double the regional rate of energy productivity by 2050. All remaining energy needs are to be provided by renewable resources, also by 2050.
- With significant upgrades to public infrastructure, energy efficiency upgrades, and the deployment of renewable energy technologies, by 2050 the plans anticipate a cumulative total investment roughly equal to one year's GDP. For the State of Georgia, that might equal ~\$525 billion.
- The result will be a more resilient, robust and sustainable economy that also increases the net gains in jobs.

The 7 Ways Energy Productivity Can Improve the Robustness of a National or Regional Economy

- It can save money and lower dependence on imported oil and reduce the potential of other supply disruptions.
- It can minimize the volatility of energy and other prices.
- It will both lessen the threat of climate change and increase the opportunities for adaptation to shifts in climate patterns.
- It can boost overall economic productivity and job creation.
- It will lessen health and other environmental impacts.
- It will likely stimulate a higher level of innovation across all sectors—increasing the prospect for a resilient, a more durable, and a more vigorous economy.
- It will demonstrate a very real leadership that, in turn, may catalyze other regions to develop a similar roadmap, with synergies that amplify benefits and further reduce the risks.

MRDH and Luxembourg: Elevating to a Higher Level of Economic Performance

'Our world is in transition. We no longer live in an era of change, but are witnessing the change of an era. We are on the verge of the greatest social and economic challenge since the 19th century. Global trends like climate change, geopolitical changes, increasing migration, growing inequality, natural resource depletion (lagging rates of resource productivity) and the emergence of disruptive technological innovations are driving the transition to a systemic change. We need to anticipate this change that will **fundamentally alter the way we manage, power and move our society.'**

MRDH Roadmap Next Economy, February 2017

'Today, a transition toward the Third Industrial Revolution is underway, and Luxembourg is the first country to get prepared at the national level. During the forum, different parts of the Grand Duchy's national strategy will allow you to discover how the country enrolls in the coconstruction of this new sustainable economic model.'

IMS Luxembourg, November 2016

The Luxembourg Future Cost of Energy Services

Source: John A. "Skip" Laitner (September 2016).

Perhaps Our Ultimate Economic and Energy Efficiency Resource?

Georgia

Tech

- Recalling the comment of early Twentieth Century UK essayist, Lionel Strachey, who remarked: *"Americans guess because they are in too great a hurry to think."*
- Jerry Hirschberg, founder and former CEO of Nissan Design, who noted that: "Creativity is not an escape from disciplined thinking. It is an escape with disciplined thinking."
- And Henry Ford once said, "Thinking is the hardest work there is which is the probable reason why so few engage in it."

High above the hushed crowd, Rex tried to remain focused. Still, he couldn't shake one nagging thought: He was an old dog and this was a new trick.

Contact Information

John A. "Skip" Laitner (@EconSkip) Principal Economist and Consultant Economic and Human Dimensions Research Associates https://theresourceimperative.com/

Tucson, Arizona 85750 c: (571) 332-9434 Email: EconSkip@gmail.com

"Policy Pathways to an Advanced Energy Economy" Professor Marilyn Brown Georgia Tech, School of Public Policy

Policy Pathways to an Advanced Energy Economy

Marilyn A. Brown

Brook Byers Professor of Sustainable Systems,

School of Public Policy, Georgia Institute of Technology

Energy Transitions Forum

July 25, 2017

2016: Hottest Year on Record

Georgia Tech IGERT Energy Materials & Policy

Land & Ocean Temperature Percentiles Jan-Dec 2016

NOAA's National Centers for Environmental Information

Data Source: GHCN-M version 3.3.0 & ERSST version 4.0.0

2016 temperatures compared to normal around the globe. (NOAA)

The Southeastern U.S. is no longer an "anomaly".

\$180 billion of new power plants to meet this load, or can we better manage our demand?

Peak Temperatures Will Push Electric Grid to the Brink in an Ever-Warming W...

Rising temperature could cost U.S. utilities as much as \$180 billion this century due to greater electricity demand.

seeker.com

Georgia Meeting the 2°C Goal

IGERT Energy Materials & Policy

Red ~ Current Policies

Blue ~ The Paris Accord – The "First Pivot"

Green ~ The 2°C Goal – The "Second Pivot"

The Paris Accord is an important first step, but it is not strong enough to limit the global temperature increase to 2°C above the pre-industrial revolution.

Source: Adapted from the International Energy Agency's *World Energy Outlook*

 IEA: Energy efficiency and renewables will likely dominate the "Second Pivot"

Adapted from: IEA (2015) Energy and Climate Change: A Special Report

The "LCOE" Metric

How can the answer not be energy efficiency & renewables?

The LCOE metric is incomplete:

Georgia Tech

- --the hourly shape of supply and demand,
- --the need for frequency and voltage control and support,
- --reactive power planning and other locationally variable resource issues.

Source: Green Savings, Figure 2.10

Forum and Celebration of Energy Transitions

Efficiency 1-8¢

Changing the Narrative

The U.S. has about 75,000 jobs in coal mining. Automation has had a major impact on this workforce: autonomous trucks work the Powder River Basin....

See: 30-minute CNN discussion: 175,000 live "hits"

https://www.facebook.com/cnn/videos/10156318782866509/?hc_ref=NEWSFEED

Georgia Energy Efficiency Jobs

IGERT Energy Materials & Policy

Nearly 1 million U.S. workers spend a majority of their time installing energy-efficient equipment and services.

Technologies include:

- Advanced windows & insulation
- High efficiency HVAC
- Smart thermostats
- Efficient lighting and controls
- Energy Star appliances, etc.

Source: Environmental Entrepreneurs (E2) and E4 The Future. 2016. *Energy Efficiency Jobs in America*.

Solar Jobs

- The U.S. has about 250,000 workers in the solar industry.
- One out of every 50 new jobs added in the U.S. in 2016 was created by the solar industry.

Source: The Solar Foundation. 2017. *National Solar Jobs Census 2016*, available at: SolarJobsCensus.org.

Forum and Celebration of Energy Transitions

my Carter: From Peanuts to Solar

Martyn, Brownil - Tith

Job Coefficients for Different Types of Energy Investments

Georgia Tech

Forum and Celebration of Energy Transitions

Georgia Types of Jobs Generated by Investments in Energy Efficiency and New Solar

IGERT Energy Materials & Policy

Georgia Tech Conventional Energy Jobs are Shrinking

Jobs in the U.S. are forecast to continue to grow, especially service sectors:

Conventional energy jobs are forecast to shrink, but jobs In the new energy economy will grow:

IGERT

Energy Materials & Policy

Source: GT-NEMS modeling results

Co-optimizing demand- and supply-side resources can produce "negative" carbon mitigation costs.

- + lower electricity bills.
- Smart climate policies are needed:
- Carbon caps: the "Clean Power Plan")
- Carbon taxes: the "Carbon Dividends Plan"
 - redistribute taxes on a per capita basis vs
 - redistribute per source of CO_2 .

Cost of climate policy in 2030 (in billions \$2013)

Climate Policy:	Electric Utility Resource Costs	Costs Including Energy-Efficiency Investments
Carbon Cap	5.4	6.5
Carbon Cap + EE	-9.6	-2.9
\$10 Carbon Tax	5.4	6.5
\$10 Carbon Tax + EE	-9.6	-2.9

Cost of climate policy = utility resource cost + EE costs + administrative costs – carbon tax recycling (net present value @7% discount rate)

Winners and Losers

Georgia Tech

The clean power transformation can grow the economy, create jobs with livable wages, improve human health, and protect the environment.

A great deal is at stake, and policy design matters.

Winners and losers are inevitable at all geographic scales.

Blending the engineering and natural sciences with economics, social sciences, and policy analysis can reveal new possibilities and avoid unwanted futures.

For More Information

266

Dr. Marilyn A. Brown

Georgia

Tech

Brook Byers Professor of Sustainable Systems School of Public Policy Georgia Institute of Technology Atlanta, GA 30332-0345 <u>Marilyn.Brown@gatech.edu</u> Climate and Energy Policy Lab: www.cepl.gatech.edu

IGERT

Energy Materials

& Policy

DISCUSSION OF AFTERNOON TALKS

Charles Rossmann Forecasting and Model Development Manager Southern Company

CLOSING REMARKS

Elsa Reichmanis Chemistry and Biochemistry Georgia Institute of Technology

THANK YOU!

APPENDIX

"Envisioning Future Energy Technologies" Aaron Melda Tennessee Valley Authority

Appendix (Other Slide Options)

Load Dispatch on Typical Summer Day

Load Dispatch on Typical Winter Day

Forum and Celebration of Energy Transitions

APPENDIX

THE POLICY IMPLICATIONS OF SOLAR PENETRATION

Ross Beppler IGERT Fellow – Public Policy

MODEL, DATA, METHODOLOGY – PJM DEMAND

MODEL, DATA, METHODOLOGY – PJM SUPPLY CURVE

MODEL, DATA, METHODOLOGY – CUSTOMER LOAD PROFILES

MODEL, DATA, METHODOLOGY – SOLAR GENERATION

MODEL, DATA, METHODOLOGY – SCENARIOS

- Base Case Designed to imitate current policy
 - 5% solar by 2030
 - New capacity installations in each rate class match 2015 levels
 - 70% distributed solar (of that ½ C&I and 1/3 residential)
- High Case -
 - 15% solar by 2030
- High Grid
 - 70% grid scale installations
- High Res
 - 2/3 of distributed is residential

MODEL, DATA, METHODOLOGY – OTHER ASSUMPTIONS

- Energy demand is inelastic
- Energy demand is constant over time
- Natural gas prices are constant
- Future SREC prices are 50% of the SACP
- Average System Size Remains Constant
 - Residential 5kW
 - Small Commercial 40 kW
 - C&I 750 kW
- Rate structure doesn't change

RESULTS – SUPPLY RATES

RESULTS – DISTRIBUTION RATES

CREATING THE NEXT

Georgia Tech

RESULTS – AVERAGE BILLS

RESULTS – PARTICIPANT BILLS

////// CREATING THE NEXT*

RESULTS – NON PARTICIPANT BILLS

RESULTS – BILLS OVER TIME

Residential Bills Over Time \$165 \$160 \$155 **Base Case** \$150 High Case \$145 **High Grid** \$140 **High Residential** \$135 **Small Commercial Bills Over Time** \$130 \$720 2015 2016 2018 2019 2020 2021 2021 2023 2023 2023 2025 2026 2028 2029 2030 2027 2017 \$710 \$700 \$690 \$680 Base Case \$670 High Case \$660 High Grid \$650 High Residential \$640 \$630 \$620 2015 2016 2028 2029 2030 2018 2019 2020 2022 2023 2024 2025 2026 2017 2021 2027
CONCLUSIONS

- Fears of "Death Spiral" may be exaggerated
 - In the Base Case, non-participant bills only increase by 2%
- Who installs solar (which rate class or grid scale) matters
- Non-adopters subsidize solar participants
- Coincident Peak Hour changes lead to rate class crosssubsidization

POLICY IMPLICATIONS

- There are distributional and equity consequences of nonparticipants subsidizing solar adopters
- Do different policy attract different adopters?
- Cost Causality
 - How do utilities attribute fixed costs
 - What is the value of solar?
- Will technology facilitate alternative rate designs?
 - Rate designs are the product of a political process
 - Concentrated vs. diffuse interests
- Political Nature of PUCs

NEXT STEPS AND FUTURE RESEARCH

- Sensitivity Analysis
- Locational Consequences
- Introduce variable demand
- Alternative Rate Structures
- Customer "Profiles"

Standardized Distance From Peak