
lable at ScienceDirect

Energy 155 (2018) 162e173
Contents lists avai
Energy

journal homepage: www.elsevier .com/locate/energy
Estimating residential energy consumption in metropolitan areas: A
microsimulation approach

Wenwen Zhang a, *, Caleb Robinson b, Subhrajit Guhathakurta c, Venu M. Garikapati d,
Bistra Dilkina e, Marilyn A. Brown f, Ram M. Pendyala g

a Virginia Polytechnic Institute and State University, Department of Urban Affairs and Planning, Blacksburg, VA, USA
b Georgia Institute of Technology, School of Computational Science & Engineering, Atlanta, GA, Georgia
c Georgia Institute of Technology, School of City & Regional Planning, Atlanta, GA, Georgia
d National Renewable Energy Laboratory, Golden, CO, USA
e University of Southern California, Department of Computer Science, Los Angeles, Los Angeles, CA, USA
f Georgia Institute of Technology, School of Public Policy, Atlanta, GA, Georgia
g Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, USA
a r t i c l e i n f o

Article history:
Available online 4 May 2018

Keywords:
Residential energy consumption
Data synthesis
Statistical matching
Machine learning
* Corresponding author. Virginia Polytechnic Ins
Department of Urban Affairs and Planning, Blacksbur

E-mail address: wenwenz3@vt.edu (W. Zhang).

https://doi.org/10.1016/j.energy.2018.04.161
0360-5442/Published by Elsevier Ltd.
a b s t r a c t

Prior research has shown that land use patterns and the spatial configurations of cities have a significant
impact on residential energy demand. Given the pressing issues surrounding energy security and climate
change, there is renewed interest in developing and retrofitting cities to make them more energy effi-
cient. Yet deriving micro-scale residential energy footprints of metropolitan areas is challenging because
high resolution data from energy providers is generally unavailable. In this study, a bottom-up model is
proposed to estimate residential energy demand using datasets that are commonly available in the
United States. The model applies novel machine learning methods to match records in the Residential
Energy Consumption Survey with Public Use Microdata samples. This matching and machine learning
produce a synthetic household energy distribution at a neighborhood scale. The model was tested and
validated with data from the Atlanta metropolitan region to demonstrate its application and promise.

Published by Elsevier Ltd.
1. Introduction

The residential sector consumes a little more than one-fifth of
total energy demand in the U.S. and this proportion has not
changed significantly for about 30 years. However, during this
period the sector's consumption grew by around 28%, which was
slightly slower than the growth in population (30%) and signifi-
cantly slower than the growth in the number of homes (40%) [1].
The slower pace of growth in energy consumption within homes
has been attributed to better building design, construction, and
retrofitting with improved products such as low-e windows and
foam insulation. The efficiency of lighting, home appliances and
heating, ventilation, and air conditioning (HVAC) systems has also
advanced [2].

While the slower growth in demand for household energy has
titute and State University,
g, VA, USA.
been a welcome trend for energy and climate security, there is
concern that further progress will be increasingly challenging
without new initiatives. The average U.S. household now usesmany
more consumer electronics e in particular, computers, cell phones,
tablets, and related devices. In addition, the average house has
added 1000 square feet since 1973 and this trend is continuing.
Therefore, new strategies are being debated to further shrink U.S.
reliance on fossil fuels. One such strategy involves designing and
retrofitting urban areas to reduce their energy requirements and to
offer opportunities for shorter travel distances. For instance, one
study compared the impact of residential development density on
residential energy use in Toronto and suggested that compact
developed pattern should be encouraged to reduce residential en-
ergy consumption [3]. An Austin, TX-based empirical study also
found that life-cycle residential and transportation energy de-
mands for households living in densely developed areas are
significantly lower compared with their peers in suburban areas
[4]. A more recent study also arrived at a similar conclusion using
data from Phoenix, AZ [5]. The link between density and energy
footprints has also corroborated by statistical analysis of the 100



W. Zhang et al. / Energy 155 (2018) 162e173 163
largest metropolitan areas in the U.S [6].
Although prior research has indicated that urban form is

significantly related to household operation and transportation
energy use, most studies have focused on analyzing and modeling
energy savings in the transportation sector. Zhang [7]'s study in
Phoenix, AZ, suggested that more compact development in subur-
ban areas can reduce travel energy footprint. Garikapati et al. [8]
developed a generalizable method to estimate travel energy con-
sumption based on built environment features and outputs from
regional transportation demand model. The studies on the impact
of urban form/neighborhood design on residential operational
energy use, is constrained by a lack of residential energy con-
sumption data at fine spatial granularity [9]. Determining the en-
ergy footprint of the residential sector in a metropolitan region at
the neighborhood scale is challenging, largely because information
on household energy use is difficult to obtain from utility com-
panies due to legal and privacy concerns. In the absence of such
objective data, household surveys are utilized to collect informa-
tion about energy use together with the factors that drive house-
hold energy consumption, such as the type of housing, occupant
behaviors, type and number of appliances and devices, and built
environment characteristics. Such surveys are time-consuming and
expensive especially if representative samples are to be drawn at
the neighborhood scale. Themost authoritative and detailed survey
of residential energy use, which is known as the Residential Energy
Consumption Survey (RECS), is conducted by the U.S. Energy In-
formation Administration (EIA). The sample of households in RECS
is nationally representative; however, subsamples compiled using
the geographic identifiers available in RECS may not be represen-
tative of more disaggregate residential neighborhoods under the
geographic identifiers. Moreover, household records in RECS are
not available for small geographic units, such as neighborhoods.
Therefore, understanding how the design of neighborhoods will
influence residential energy consumption is difficult from exclu-
sively RECS data.

Developing a robust disaggregated residential consumption
model is useful for multiple planning purposes. Model predictions
can be used to determine the variation in city or regional energy
demand, especially for comparing different newly developed areas
or neighborhoods that experience significant demographic
changes. Model coefficients can be interpreted to identify the
sensitivity of residential energy consumption to property charac-
teristics, user attributes, and urban form parameters such as den-
sity and land use diversity. Model results can be used to devise
policies and provide guidance for designing energy efficient
neighborhoods. The model may also be used to assess residential
energy consumption under various scenarios of market penetration
of new technology, energy prices, and urban form changes. This
study addresses the objectives listed above by developing a novel
bottom-up technique for generating estimates of neighborhood
level residential energy consumption by: 1) matching RECS data
with other publicly available datasets using machine-learning al-
gorithms; and 2) synthesizing residential energy consumption at
the level of traffic analysis zones for the study region. The meth-
odology not only overcomes many of the challenges of existing
modeling approaches but is also easily replicable for all U.S.
metropolitan areas.

The residential energy estimation technique described in this
paper is tested and validated using data from the Atlanta metro-
politan area. Given that the input data used for the Atlanta metro
case study are all widely available for most other U.S. metropolitan
regions, the proposed methodology can be widely applied to other
large cities in the U.S. as well. To enable wide application of the
developed tool, the code is open sourced and available through a
public GitHub repository (available at https://github.com/SEI-
ENERGY). Additionally, other researchers can further improve
these tools and advance this line of research.

The rest of the paper is divided into five sections. Section two
outlines the prior foundational research that our current work is
now advancing. The third section describes the various methodo-
logical approaches that enabled our work. Section four demon-
strates the application of the methods using data from the Atlanta
metropolitan region. Section five offers a discussion of the results
from the neighborhood level residential energy estimates derived
in section four. Finally, section six presents summary remarks and
limitations of the approach.

2. Prior studies

The literature on modeling and estimating residential energy
consumption can be generally classified into two types: 1) top-
down models and 2) bottom-up models. Top-down models typi-
cally examine regional estimates of residential energy consumption
using longitudinal aggregated data about fairly macro-scale factors,
such as gross domestic product (GDP), economic activities, and
population. Bianco [10] found that residential natural gas con-
sumption in Italy is linearly correlated with GDP, price of the fuel
and population size. The price of energy and the adoption of energy
equipment have also been positively correlated with residential
energy consumption using data from Italy [11], along with the
aggregate age, evolution, and density of housing. Glaeser and Kahn
[43] showed that aggregated residential energy consumption/
emission is higher in U.S. regions where overall housing density is
comparatively lower and such phenomenon is typically significant
in older regions, such as New York. A longitudinal study in China
also suggested that normalized residential energy consumption at
the province level is negatively correlated with the urbanization
process [12]. County-level data are often used to characterize the
impact of urban form on residential energy consumption at the
metro scale. For instance, Brown and Cox [13] estimated energy
consumption and carbon emissions for counties in the 100 largest
U.S. metropolitan areas. These models are often used to assess total
the total energy demand of cities and metropolitan areas, but they
are not suitable for evaluating variations in energy consumption
across neighborhoods. Top-down models are therefore ineffective
in determining the technological upgrades or urban built envi-
ronment reconfigurations that would help reduce residential en-
ergy footprint at the neighborhood scale.

The bottom-up models, in contrast, estimate residential energy
consumption using micro-samples collected from the region. The
bottom-up approach can be implemented through either statistical
models or engineering models. The statistical models relate unique
contributions of various factors to residential energy consumption.
Raffio [14] linearly associated housing units, socio-economic, and
demographic features of households and weather data with resi-
dential energy profile. Fung [15] showed that residential energy
consumption is linearly correlated with energy price, household
demographics, appliance features, and weather, across different
end-uses. Lopes [16] associated household electricity consumption
with household behaviors, such as weekly washes, appliance use
knowledge, and other control variables, such as income, education,
and demographics. Their results showed that electricity con-
sumption is positively related with the intensity of use and in-
dividual's knowledge regarding how to adjust appliances for more
efficient energy use. As with county-level heating and cooling de-
gree days in top-down models, urban variations in micro-climates
including heating and cooling degree days are often included in
bottom-up models [17]. The principal aim of statistical models is to
help inform the design of policies that influence energy prices [18]
and the formulation of incentives to promote energy conservation
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by encouraging changes in user behaviors [19]. Historically, statis-
tical models have seldom been used to assess total energy demand
in a region. Some recent studies, however, have developed
advanced machine learning-based statistical models to predict
residential energy consumption. Aydinalp, Ugursal, and Fung used
neural networks to predict appliance, lighting, and space-cooling
energy consumptions [41] and domestic hot-water heating en-
ergy consumption [42] in residential buildings and found that
neural networks can significantly improve the predictability. Dong
[20] applied support vector machine models to predict building
energy consumption in tropical regions. Jain [21] also successfully
trained support vector machine models to predict energy con-
sumption in multifamily housing units. However, these models are
rather data intensive and difficult to apply for large study areas.

Engineering models compute energy consumption based on
energy ratings of various appliances, buildingmaterials, and energy
saving technologies on-site using thermodynamic theorems [22].
Specifically, engineering models first estimate energy consumption
for a series of typical prototypes or archetypes of housing stocks in
the region, using a small sample of buildings [23]. The prototypical
units for which energy consumption is derived are then compared
to their prevalence in the region and aggregated to derive the total
residential energy footprint. The objective here is to extrapolate the
results to the entire region so that the total residential energy
consumption or the changes in consumption under various tech-
nology penetration scenarios can be obtained. The extrapolation
from the prototypical housing stocks to the region is usually
accomplished by assigning weights to the sampled buildings based
on the regional housing inventory. A critical drawback of these
engineering models is that socio-economic characteristics and
occupant behaviors are not captured but instead are simplified
using various assumptions. Many calculations, codified in software
systems, have been developed to estimate building energy con-
sumption using this modeling approach. Crawley [24] conducted a
comprehensive comparison of twenty programs, and the results
suggest that the requiredmodel inputs are quite large and available
only at regional scales. The International Organization for Stan-
dardization (ISO) guidebook for building energy consumption
estimation also indicate that engineering models require extensive
microscopic data inputs [25].

Despite different model objectives, the statistical and engi-
neering models share some limitations. First, both model ap-
proaches rely heavily on the availability of historical micro-level
sample data, which are usually time-consuming and expensive to
collect. Swan [26] reviewed many residential energy prediction
studies and pointed out the lack of micro-level data as a bottleneck
for many modeling efforts. Similar issues are also identified in a
more recent building energy modeling review effort Zhao [22]. For
instance, as noted earlier, the U.S. EIA publishes RECS every three to
five years but the sample size in each metropolitan area is quite
small, rendering it insufficient to assess local energy consumption.
Additionally, it is difficult, if not impossible, to extrapolate the
building-level model results to the region, as the features consid-
ered in the models are usually not available across the region [27].

To address the limitations of previous approaches for residential
energy estimation, this study proposes a new strategy for bottom-
up estimation of residential energy consumption. The proposed
approach uses Residential Energy Consumption Survey (RECS),
Public Use Microdata Sample (PUMS), and American Community
Survey (ACS) data as inputs and provides synthesized households
with appended energy consumption for the study region as out-
puts. The input data are available for all major metropolitan areas in
the U.S. Therefore, the methodology presented in this paper can
potentially be applied to estimate residential energy consumption
in any U.S. metro region.
3. Methods

The neighborhood-level residential energy consumption esti-
mates are derived in four sequential steps: 1) statistically match
household records between the RECS and PUMS data, 2) estimate
energy consumption models using the matched records and
impute energy consumption for the unmatched records in PUMS
data, 3) synthesize households using enhanced PUMS and ACS
data, and 4) aggregate the energy consumption estimates by
households to the level of defined subareas, such as traffic anal-
ysis zones (TAZs).

The objective of the first two components of the modeling
framework is to develop energy consumption models using
explanatory variables available in the PUMS data so that resi-
dential energy consumption can be estimated for households in
the regional synthetic population. The PUMS data, however, do
not contain energy consumption information which is critical for
developing energy source specific models. The RECS data, on the
other hand, do have comprehensive energy use variables by en-
ergy source for each sampled household. Yet, RECS cannot be
used to develop metropolitan-scale models since its sample sizes
are too small and not representative. More importantly, the
sample households in the RECS data are not geo-located. There-
fore, our proposed model first statistically matches households in
RECS with PUMS data based on variables that are common to both
data sets. In other words, a statistical matching process is
employed to “join” the energy consumption variables from the
RECS data to a portion of the PUMS data based on the similarity of
variables present in both data sets. In the second step, a set of
models is estimated using energy consumption variables (merged
from the RECS data) as the dependent variables and household
socio-demographic and economic features and housing unit
characteristics in the PUMS data as the independent variables.
The estimated models are then applied to the unmatched PUMS
data to impute energy consumption for these records. At the end
of the first two steps described above, all the PUMS data records
are appended with energy consumption information by source for
each sample household.

The third step takes the PUMS data with added energy con-
sumption information as the seed matrix and relevant ACS data as
the marginal controls to synthesize a complete population of
households in the study region. Both household-level and
population-level variables, which are highly correlated with energy
consumption in the estimated models, are controlled to obtain a
more representative profile. Finally, the synthesized energy con-
sumption at the household level is aggregated up to selected
geographic units to estimate the spatial distribution of energy
consumption in the region. Because of the novelty of this machine
learning approach, the following sections elaborate on our
modeling steps.
3.1. Statistical matching

Statistical matching methods are widely used when no single
dataset has the full set of variables needed for further analysis. In
this study, both residential energy consumption estimates and a
wide range of household and population level socio-economic
variables are needed to be present in the same dataset to esti-
mate residential energy consumption as a function of household,
person, and housing unit attributes. Since the RECS data comprises
small sample sizes at metropolitan area scale, it is first statistically
matched with PUMS data to append residential energy consump-
tion variables to a set of statistically similar households in the PUMS
data.
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This statistical matching framework begins with RECS data and
PUMS data sharing a limited set of variables, X, while residential
electricity, natural gas, and other energy consumption variables, Z,
are only available in the RECS data and many other socio-
demographic and economic variables, Y , are only available in the
PUMS data. The objective of this data matching step is to join two
datasets using X so that Y and Z can be present in the same table
(i.e., RECS ∪PUMS). After identifying the common variables X, it is
necessary to perform some “harmonizing” procedures to ensure
that the common variables share the same measurement criteria.
For instance, ordinal income variables may have different income
ranges for each bin, necessitating some adjustment to facilitate the
matching process. Additionally, some categorical variables, such as
heating fuel types also need to be cross-compared to confirm the
match in the definitions of classification methods. Finally, the
common numerical variables are standardized to z-scores using
mean, mpooled, and standard deviation, spooled, calculated with X
from both RECS and PUMS to eliminate the impacts of alternative
measurement units in the matching process. The formula is shown
below:

zi ¼
�
xi � mpooled

�

spooled
(1)

Furthermore, not all X can be used for matching purposes; only
the XM ðXM 4XÞ that is most relevant to Z should be used as the
matching variables [28]. The correlations between X and Z variables
are estimated using Spearman's rank correlation coefficients. After
determining the matching variables that are strongly correlated
with energy consumption, XM , the two datasets are joined using the
nearest neighbor distance hot deck micro-matching method pro-
vided in the R package StatMatch. This a nonparametric approach,
which is frequently used in statistical matching when the objective
is to generate a synthetic dataset with X, Y , and Z variables [28].
This method searches in the PUMS data for the nearest neighbor of
each record in the RECS data according to the distance calculated on
the continuous matching variables. The distance d, is estimated as
the Manhattan Distance (i.e., the default measurement in Stat-
Match Package), as shown in the equation below. Manhattan Dis-
tance is sufficient to perform one-to-one matching between RECS
and PUMS data, as there is a small number of continuous matching
variables and the variables are standardized before matching. The
Manhattan Distance is also selected because it can reduce
computation costs of the matching process

d ¼
Xn

i¼1

���XRECS
Mi

� XPUMS
Mi

��� (2)

where.

n, is the total number of matching variables;
XRECS
Mi

, refers to the ith matching variable from the RECS dataset;
XPUMS
Mi

, refers to the ith matching variable from the PUMS
dataset.

The ordinal and nominal matching variables are used to define
matching classes. Only records in the same matching classes can be
matched together, i.e., only records that fall into the same income
category, heating fuel type, etc. can be matched with each other.
The matching quality is then evaluated by 1) examining the dis-
tribution of matching distances between records and 2) comparing
the correlation structure of Z and XM variables in the RECS data and
the matched data [29].
3.2. Residential energy consumption imputation

Various machine learning models are used to impute the resi-
dential energy consumption for the unmatched PUMS records
across different energy sources. The models are trained using the
set of matched PUMS records. The target features are residential
energy consumption by BTU (British Thermal Unit) type. All other
socio-demographic, economic and housing unit variables in the
PUMS data are used as explanatory features. The categorical vari-
ables are transformed into sequences of binary variables before
including them in the models. Variables that are considered irrel-
evant to energy consumption estimation are excluded manually. To
prevent over-fitting and improve the generalizability of the model
to other datasets, the 10-fold cross validation method is used to
select the best models and parameters. The examined models
include Linear Regression, Ridge Regression [30], Lasso Regression
[31], Elastic Net Regression, Bagging [32], Random Forest [33],
Support Vector Machine (SVM) [34], AdaBoost [35], Gradient
Boosting [36], and Extra Trees. The Mean Absolute Percentage Er-
rors (MAPE), Mean Absolute Errors (MAE), and Average R2 score on
the testing datasets are calculated to evaluate and compare the
overall performance of the models. For some households, the
observed consumption for natural gas and other source of energy is
zero, rendering it impossible to some models with MAPE scores.
Therefore, the models with the lowest MAE values are used to
impute source specific energy consumption for unmatched PUMS
records. The model development, parameter estimation, cross-
validation, and algorithm application procedures are imple-
mented using 2.7 Python Scikit-learn library [37].

3.3. Household synthesis

The final PUMS data (with imputed energy consumption) output
from the previous step, together with ACS data on the marginal
distributions of various socio-economic attributes of the popula-
tion, are then used to generate a synthetic population of house-
holds for the entire metropolitan region. The PUMS records, with
estimated energy consumption variables, are essentially replicated
(weighted and expanded) to produce a synthetic population of
household agents in the region that mimics the distributions of
socio-economic attributes as depicted in the ACS data. The PUMS
data provide joint distributions for various socio-economic and
demographic variables. The ACS data provide marginal distribu-
tions for various socio-economic and demographic variables at
census tract, block group and block levels. In this study, the syn-
thetic population is generated such that population distributions
are matched at the block group level, thus ensuring that the syn-
thetic population is highly representative of the true population in
the region. The block group level synthetic population records can
be aggregated to any desired level of geographic resolution (say,
traffic analysis zone, regional planning district, or zip code) to
perform neighborhood level analysis of consumption patterns. The
Iterative Proportional Updating (IPU) algorithm embedded within
the PopGen software package is used to ensure that both household
and person characteristics are controlled and matched in the
population synthesis process [38].

4. Data and model implementation

The modeling approach developed in the previous section is
tested by applying it to the 10-county Atlanta metropolitan area for
generating TAZ-level residential energy consumption estimates.
The results are then compared with electricity and natural gas
consumption data provided by Georgia Power and Atlanta Gas Light
to validate the model outputs.
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4.1. Data

Data used to implement our proposed model include the 2009
RECS public use micro-dataset, the 2009 PUMS data, and the 2009
ACS data. The RECS data contain information about various attri-
butes of housing units and some socio-economic and demographic
characteristics of the occupants. The latest RECS data with
household-level energy consumption and energy expenditures are
available for the year 2009; the data contain 2246 sampled
households in the southeast region (i.e., Subdivision 5). Because the
analysis is being done for the Atlanta metropolitan region, only the
RECS records from the southeast region were used for energy
consumption model estimation with a view to control for
geographic disparities in energy consumption patterns across the
country.

The PUMS data include housing unit and population records
with individual response information collected from the American
Community Survey (ACS). In contrast to RECS data, the PUMS data
contain significantly more information on demographic and socio-
economic attributes and contain a limited set of housing unit level
features. While energy consumption data are not included, the
PUMS data do contain self-reported energy bills (expenses) as a
proxy measure of residential energy consumption. Compared with
RECS data, PUMS data provide a larger sample size for the State of
Georgia. There are 37,009 household records in the 2009 Georgia
PUMS data.

The ACS data provide summary statistical information about
housing units, households, and persons on a yearly basis by the
designated census geographic units, such as census tracts, block
groups or blocks. The data serve as an authoritative source of in-
formation on the marginal distributions of specific characteristics
of the population residing in the defined geographic units. Most
attributes present in the PUMS data have corresponding marginal
distributions available in the ACS data. Therefore, this dataset is
used to derive marginal controls necessary to generate represen-
tative synthetic households.

4.2. Statistical matching implementation

RECS data in Region 5 (i.e., the Southeast region) are statistically
matched with PUMS data for Georgia using common variables in
both datasets, so that the energy consumption information,
including electricity BTU (ELBTU), natural gas BTU (NGBTU) and
other BTU (OBTU), can be appended to the matched PUMS records.
First, the identify shared variables are tabulated in Appendix A.
There are 12 common variables, including the type of housing unit,
property ownership, year built, energy bills in the two datasets.
After close examination, it is noticed that although these variables
measure the same aspect of households or housing units, the
measurement units or categories used can vary significantly. To
harmonize the measurements, the common variables are reclassi-
fied or reorganized through appropriate transformations or ag-
gregation and reconciliation of categories.

The Spearman rho rank correlation analysis is conducted to
determine the final matching variables, and the results are shown
in Table 1. The variables with the highest correlations (bolded) are
used as matching variables. The household structure and heating
fuel are categorical variables and are therefore used as group con-
trol variables, indicating that only households with the same
household structure and heating fuel type can be joined. The joint
distribution of household type and heating fuel type reveals that
some heating fuel types, such as solar, district steam, and coal, are
only used by a small sample of households. As a result, there will be
some housing categories with zero observations if all heating fuel
types are retained in the model, rendering the matching process
infeasible to complete. For instance, if there is no apartment with
wood as heating fuel in the RECS data, then all similar records in the
PUMS will not be matched and appended with energy consump-
tion. Therefore, to simplify the matching process and ensure a high
level of statistical data fusion, the heating fuel types are reclassified
into three categories: 1) electricity, 2) natural gas, and 3) other
fuels.

The continuous variables, such as the total number of rooms,
and annual electricity, natural gas, and other fuel expenses are used
as match variables. To eliminate the influence of differing mea-
surement units on the Manhattan Distance calculation outcome, all
of the continuous matching variables are standardized. Different
matching variables are used to join ELBTU, NGBTU, and OBTU to the
PUMS data, as shown in Table 2. The number of bedrooms is not
used as amatching variable for joining ELBTU, given two reasons: 1)
it is highly correlated with the total number of rooms in both
datasets and 2) there are many missing bedroom values in the
PUMS dataset. There are no missing values for the selected
matching variables.

The records from RECS and PUMS are then matched together
by minimizing the differences between distance calculation vari-
ables for households within the same category as defined by the
group control variables. For each RECS record, the closest PUMS
record is found and matched. For ELBTU, the maximum estimated
distance between the matched records is 14.11. This is because
there is an observation with 23 rooms and $19,040 in annual
electricity expenses in the RECS data; the closest household that
the algorithm found in the PUMS data is a household with 17
rooms and $6480 in annual electricity expenditures. Including the
above outlier, there are only three matched pairs with a distance
larger than 1. To ensure that only households that closely resemble
one another are matched together, these three outlier households
are removed from the final matched outputs. The final median
distance is just 0.038, and the 75th percentile distance value is
0.057, indicating that the data are well matched together [29]. The
maximum distance for matching results of OBTU is 33.45. This is
because one household in the RECS data has an annual bill of
$12,972 for other energy sources, while the household that
consumed the most in other fuels in the PUMS data had an
expenditure of $4300 annually. Therefore, these two households
are not compatible from a statistical matching perspective and are
removed from the output. The maximum distance for the rest of
the matched records is 0.98. For the NGBTU matching results, the
maximum distance is 0.06, suggesting all of the households are
matched successfully.

To validate the matching results, ordinary least squares (OLS)
regressions are estimated, with ELBTU, NGBTU, and OBTU as the
dependent variables and the corresponding categorical and
continuous matching variables from both the RECS and PUMS data
as the independent variables. The detailed results are summarized
in Table 3. The adjusted R-square of themodels are reasonably high,
and the significance, signs, and magnitude of estimated coefficients
are consistent across models using the RECS and PUMS data. In
sum, all of these outputs suggest the matching results are robust.

4.3. Energy consumption (BTU) imputation model results

The features in the matched PUMS dataset are first processed.
Variables with more than 10% missing values are not considered in
the models. This excludes 28 variables in the PUMS dataset. Among
the remaining variables, nine continuous variables are standard-
ized. The remaining 36 categorical variables are converted into 134
binary variables. The total number of variables included in the
model is 143. The averaged results of the 10-fold cross-validation
experiments are shown in Table 4 through 6. All of the training



Table 1
Spearman rho rank correlation analysis results.

Variable names Adjusted r2 ½p value� N

Electricity BTU Natural Gas BTU Other BTU

Categorical Household Structure 0.232 [0.00] 0.034 [0.00] 0.037 [0.00] 2246
Tenure Type 0.095 [0.00] 0.010 [0.00] 0.022 [0.00] 2246
Heat Fuel Type 0.046 [0.00] 0.515 [0.00] 0.179 [0.00] 2246
Income 0.110 [0.00] 0.040 [0.00] 0.000 [0.40] 2246
Move in time 0.030 [0.00] �0.001 [0.58] 0.033 [0.00] 2246
Year Built 0.013 [0.00] 0.036 [0.00] 0.016 [0.00] 2246

Numerical Bedrooms 0.261 [0.00] 0.073 [0.00] 0.005 [0.00] 2215
Total Rooms 0.249 [0.00] 0.079 [0.00] 0.009 [0.00] 2246
Household Size 0.212 [0.00] 0.009 [0.00] 0.001 [0.21] 2246
Annual Electric Bill 0.894 [0.00] 0.027 [0.00] 0.003 [0.02] 2246
Annual Natural Gas Bill 0.037 [0.00] 0.996 [0.00] 0.028 [0.00] 2246
Annual Other Bill 0.006 [0.00] 0.027 [0.00] 0.999 [0.00] 2246

Table 2
Sets of matching variables by target variable.

Type of Matching Variables ðXM Þ Target Variables ðZÞ
Electricity BTU Natural Gas BTU Other BTU

Group Control Variables Household Structure Heat Fuel Type Heat Fuel Type
Distance Calculation Variables Total Rooms

Annual Electricity Bill
Annual Natural Gas Bill Annual Other Bill

Table 3
OLS Models using variables from RECS and PUMS by BTU Types.

Variables ELBTU NGBTU OBTU

RECS PUMS RECS PUMS RECS PUMS

(Intercept) �1418.7*
(-2.007)

�1498.2*
(-2.104)

960.9*
(2.315)

1050.8*
(2.492)

�6.7
(-0.044)

�5.6
(-0.037)

Total Rooms 1063.5***
(10.024)

1047.9*
(9.779)

e e e e

Electricity Bill 25.3***
(102.337)

25.4***
(101.829)

e e e e

Natural Gas Bill e e 73.6***
(170.681)

73.5***
(167.753)

e e

Other Bill e e e e 42.6***
(166.426)

42.4***
(166.142)

Heat Fuel - Electricity 1978.3***
(4.285)

1973.8***
(4.257)

�1434.7***
(-3.340)

�1496.0***
(-3.428)

9.2
(0.051)

18.2
(0.100)

Heat Fuel - Other 3386.9
(3.418)

3495.1
(3.511)

�1121.4
(-1.445)

�1162.5
(-1.475)

�4180.7***
(-9.253)

�4085.8***
(-9.033)

Adjusted R2 0.88 0.88 0.96 0.96 0.94 0.94
N 2243 2243 2246 2246 2245 2245

Table 4
Cross-validation results for electricity energy consumption models.

Models Mean Absolute Error Median Absolute Error R2 Mean Absolute Percentage Error

Elastic Net 4.34eþ03 ± 164.10 6.40eþ03 ± 138.02 0.88± 0.01 13.38± 0.43
Lasso 4.70eþ03 ± 267.22 6.68eþ03 ± 165.09 0.87± 0.01 14.09± 0.50
Ridge 4.71eþ03 ± 281.09 6.67eþ03 ± 162.89 0.87± 0.01 14.07± 0.49
Linear 4.73eþ03 ± 291.61 6.71eþ03 ± 168.62 0.87± 0.01 14.20± 0.52
Bagging 4.89eþ03 ± 171.73 7.08eþ03 ± 135.53 0.85± 0.01 14.50± 0.33
Random Forest 4.93eþ03 ± 203.79 6.94eþ03 ± 168.49 0.86± 0.01 14.86± 0.50
Gradient Boosting 5.02eþ03 ± 239.00 6.95eþ03 ± 118.06 0.85± 0.01 14.72± 0.37
AdaBoost 7.19eþ03 ± 303.40 8.62eþ03 ± 205.73 0.82± 0.02 17.06± 0.61
Extra Trees 7.31eþ03 ± 949.76 9.04eþ03 ± 793.19 0.78± 0.03 19.15± 1.53
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models use the default parameter settings in the Scikit-learn
package. The results are sorted by Mean Absolute Errors.

The outputs for electricity consumption suggest that the Elastic
Net regression performs the best among all tested models, as
shown in Table 4. The Elastic Net model presents the smallest mean
and median absolute errors and the smallest average percent dif-
ference. The results suggest, on average, that predicted consump-
tion is approximately 13.4% different from the statistically matched
electricity BTU consumption values. Additionally, themodel has the
largest average R2 among all of the examined models. The results



Table 5
Cross-validation results for natural gas energy consumption models.

Models Mean Absolute Error Median Absolute Error R2

Elastic Net 2.88eþ03± 318.263 314.501± 77.475 0.959 ± 0.006
Random Forest 3.07eþ03 ± 338.450 79.895± 11.292 0.949± 0.008
Lasso 3.13eþ03 ± 295.669 627.051± 115.948 0.958± 0.006
Ridge 3.13eþ03 ± 295.737 637.697± 113.990 0.958± 0.006
Linear 3.15eþ03 ± 297.046 657.148± 111.088 0.957± 0.006
Bagging 3.18eþ03 ± 294.971 0.000± 0.000 0.943± 0.007
Gradient Boosting 4.71eþ03 ± 317.574 2.20eþ03 ± 51.461 0.939± 0.007
Extra Trees 5.18eþ03 ± 667.890 756.787± 184.247 0.902± 0.021
AdaBoost 5.69eþ03 ± 1.78eþ03 3.80eþ03 ± 2.40eþ03 0.938± 0.017

Table 6
Cross-validation results for other energy consumption models.

Models Mean Absolute Error Median Absolute Error R2

Random Forest 834.556± 138.063 13.111± 1.995 0.918± 0.022
Bagging 882.092± 173.000 0.000± 0.000 0.900± 0.033
Elastic Net 981.025± 121.736 32.673± 37.458 0.930± 0.017
Lasso 1.19eþ03 ± 98.960 197.003 ± 60.443 0.927± 0.021
Ridge 1.20eþ03 ± 101.890 196.339 ± 61.706 0.927± 0.021
Linear 1.22eþ03 ± 103.395 206.223 ± 66.615 0.926± 0.022
Gradient Boosting 1.30eþ03 ± 124.141 476.773 ± 17.068 0.905± 0.031
AdaBoost 1.64eþ03 ± 542.502 857.917 ± 652.291 0.910± 0.023
Extra Trees 1.67eþ03 ± 241.021 740.746 ± 261.793 0.894± 0.026
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also suggest that other linear models, such as Lasso, Ridge, and
Ordinary Least Squares also show similar prediction power (in
terms of the magnitude of errors and R2), indicating that the rela-
tionship between explanatory variables and the target variable
(ELBTU) may be considered linear. In contrast, ensemble learning
models, such as Bagging, Random Forest, Gradient Boosting, Ada-
Boost, and Extra Trees, perform comparatively poorly, with higher
absolute errors and lower R2 values.

Table 5 shows experimental results for prediction of natural gas
energy consumption. The mean average percent difference is not
reported, given that many households do not use natural gas,
rendering many cases with zero denominator. The results show
that there are tradeoffs between models. For instance, Elastic Net
models have the smallest Mean Absolute Errors and highest R2. The
Bagging models, on the other hand, have the lowest Median Ab-
solute Errors, with more than half of the predictions with zero er-
rors. The performance of Random Forest models is also impressive,
with the second-best results across all metrics. Because it has the
smallest Mean Absolute Error, the Elastic Net model is used to
impute missing NGBTU values for the unmatched PUMS records.

The model outputs for other BTU consumption, as shown in
Table 6, suggest that Random Forest models perform the best with
the lowest Mean Absolute Errors of approximately 834.6. The
Bagging models again have the lowest median absolute errors at 0.
Elastic Net, on the other hand, provides the highest R2 at 0.93.
Similar to natural gas models, the percent differences are not re-
ported as some observations have zero consumption.

In summary, the cross-validation results show thatmodels using
features available in the PUMS data perform quite well in capturing
the variations in energy consumption. The R2 values of the best
models for each fuel source are all close to or above 0.90. The
trained Elastic Net regressors are used to impute ELBTU and NGBTU,
and the Random Forest regressor is used to impute OBTU. The
above trained models are then applied to unmatched Georgia
PUMS records. The final output from this model component is an
enhanced complete PUMS dataset that has three appended col-
umns, namely, matched or imputed ELBTU, NGBTU, and OBTU
values.
4.4. Synthetic population generation

Synthetic population generation is accomplished through the
use of the PopGen 1.1 software package. This software uses PUMS
data as the seed matrix comprising joint distributions among
various features of households, and ACS data as the source of
marginal controls, to estimate a weight for each household in the
PUMS data. These weights provide a basis for expanding the
PUMS data into a full synthetic population for the region. Both
household (or housing unit) level and person level variables can
be controlled and matched in the synthesis process through the
application of the iterative proportional updating (IPU) algorithm
embedded within PopGen. The control variables are selected
based on correlations with the target variables of interest (i.e.,
ELBTU, NGBTU, and OBTU) and the availability of information in
the ACS data.

The correlation of various explanatory variables with target
variables of interest is determined using estimated coefficients
from the Elastic Net models and the feature importance scores
from the Random Forest model. The estimated top 10 coefficients
for electricity and natural gas consumption Elastic Net models are
shown in Table 7. The results show that annual electricity and
natural gas expenditures are highly correlated, as expected, with
the electricity and natural gas BTU consumption, with signifi-
cantly higher estimated coefficients for the standardized vari-
ables. However, these variables cannot be used as marginal
controls in the synthesis process due to their absence in the 2009
ACS data. Among the other top nine features, the number of
rooms, the number of persons, household income, building
structure types, family life cycle, heating fuel type, and tenure
(ownership/rent) types are available in the ACS data. Therefore,
these household-level variables are all controlled in the synthesis
process.

The importance score for “other fuel expenditure”, among fea-
tures used in the Random Forest regressor, is significantly higher
than for all other features. The importance score for other fuel ex-
penses is 0.95. The second most important feature is the household
water utility expenses. However, the number of rooms, the number



Table 7
Top 10 Most Important Features based on Elastic Net Model Coefficients.

Electricity BTU Model Natural Gas BTU Model

Features Feature Descriptions Coef. Feature Feature Descriptions Coef.
ELEP Electric (Yearly Cost) 14275.7 GASP Gas (Yearly Cost) 19781.3
RMSPa Number of Rooms 2288.1 HFL_1a Heating Fuel Type (Gas) 4550.2
BDSPa Number of Bedrooms 1539.8 WATP Water (Yearly cost) 1386.9
NPa Number of Person 1288.8 HINCPa Household Income 851.5
BLD_2a Single Family Detached 989.3 RMSPa Number of Rooms 661.5
HHT_1a Married Couple Family 790.9 BDSPa Number of Bedrooms 566.2
HFL_3a Heating Fuel Type (Elec.) 618.4 SVAL_1 Specified value owner unit 560.9
VEH_3a Three Vehicles Available 565.7 YBL_6a Structure built in 1980s 394.5
WATP Water (Yearly cost) 562.4 NPa Number of Person 331.6
SRNT_0 Not Specified Rent Unit 486.1 TEN_1a Property Owned with Mortgage 276.6

a Features available in the 2009 ACS data.

Fig. 1. Synthesized TAZ level Annual Energy Consumption per Capita.
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of persons, household income, building structure types, heating
fuel type, and tenure type are also in the top 10 important features
list. Although various utility expenses are not controlled in the
synthesis process, other critical features for which information is
available in the ACS data are all controlled. Therefore, the synthesis
process provides a representative population with a distribution of
energy consumption by source that reflects energy use patterns in
the region. Additionally, a number of person-level characteristics
are also controlled to ensure the representativeness of the synthetic
population. The variables that are controlled in the population
synthesis process are as follows:

� household level variables: income, household size, heat fuel
type, tenure, structure type, number of rooms, household type,
number of vehicles.

� person level variables: gender, age of householder, person race,
employment status.

The TAZ level residential energy consumption is then calculated
by aggregating the consumption of each synthesized household by
TAZ.
5. Results

Fig. 1 illustrates the TAZ level energy consumption per capita
for different sources of energy. The results are displayed using the
quantile classification method, with the lightest yellow repre-
senting the lowest 20% TAZs and dark brown representing the
highest 20% TAZs in energy consumption per capita. The results
for electricity energy consumption suggest each resident con-
sumes approximately 19.43 million BTU (or 20.5 Billion Joules)
per year in the 10-county Atlanta metropolitan area. The elec-
tricity consumption per capita for the State of Georgia is esti-
mated as 19.56 million BTU (20.6 Billion Joules) per year [39]. The
results show that residents located in the central metro and pe-
ripheral areas tend to consume more electricity. The results for
natural gas energy indicates the average consumption per person
is approximately 11.25 million BTU (11.9 Billion Joules) per year,
which is close to Georgia's consumption per capita (12.6 million
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Fig. 2. Electricity Synthesized Consumption
BTU/13.3 Billion Joules per year). Natural gas consumption de-
creases in peripheral areas, where the heating fuel is primarily
electricity or other fuel sources. Residents in peripheral areas tend
to consume more energy generated by other fuel types. Overall,
the energy consumption portfolio for a typical resident in the 10-
county metro area is comprised of 69.2% electricity, 28.6% natural
gas, and 2.2% other fuels. The decomposition of consumption by
energy source is consistent with statistics at the Georgia state-
wide level [40].

The estimates of electricity and natural gas energy consump-
tion are validated using the observed 2009 Atlanta energy con-
sumption at the Zip Code level. The 2009 annual electricity
consumption (in KWh) is provided by Georgia Power. The natural
gas consumption (in Therms) is obtained from Atlanta Gas Light.
The electricity consumption and natural gas consumption data
are available for 31 and 42 Zip Codes correspondingly. There are
19 Zip Codes in the City of Atlanta. In the final analysis, Zip Codes
whose centroids are outside of the city boundary, where the data
providers are not the dominant energy suppliers, are excluded.
After mapping TAZs to Zip Codes, estimates of energy consump-
tion were aggregated to the zip code level (for Zip Codes in the
city). Overall, the correlations between model estimates and
observed data are 0.908 and 0.927 for electricity and natural gas
consumption respectively. The high correlations constitute a first
indication of the validity of the proposed model framework. The
average percent differences between the aggregated synthesized
results and observed consumption data are respectively �13.6%
and 5.5% for electricity and natural gas. It seems that the model
underestimates residential energy consumption and over-
estimates natural gas consumption at the Zip code level, as shown
in Figs. 2 and 3. The differences for electricity consumption may
be caused by the different definitions of residential sectors. The
synthesized outputs do not include estimates for residents in
group quarters, such as dorms, nursing homes, and institutions.
However, the observed residential electricity data obtained from
the utilities does include all types of residential units. For
instance, there are the dorms of Savannah College of Art and
Design located in zip code 30309, Georgia State University located
in zip code 30303, and several boarding schools, such as the
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Fig. 3. Natural Gas Synthesized Consumption vs. Observed Consumption by Zip Code.
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Westminster Schools and Atlanta Girls School, in zip code 30327,
rendering the synthesized outputs are smaller than the observed
electricity consumption. The difference in the natural gas con-
sumption may be because Atlanta Gas Light is not the only gas
supplier in some parts of the city, although it serves a vast ma-
jority of households. For instance, the natural gas consumption is
overestimated in Zip code 30327, as shown in Fig. 3, where
households can choose between Atlanta Gas Light and Gas South.
Additionally, the aggregation of the total population at the Zip
code level may also lead to some errors, due to the discrepancies
between Zip code, TAZ, and census block boundaries (TAZs are
not perfectly nested within Zip Codes).

6. Conclusions

In this study, a residential energy consumption model system,
which can be potentially applied to any major U.S. city, is devel-
oped. Most bottom-up energy estimation models are data intensive
and therefore challenging to develop due to the difficulty in
obtaining micro-sample data and regional housing inventories. To
address these limitations, a bottom-up approach for energy con-
sumption was developed in this study. This approach comprises a
number of steps including statistical data matching, machine
learning and household/population synthesis. The proposed model
system requires data from publicly available sources including the
RECS, PUMS, and ACS. The model outputs a set of synthesized
households (representing the population of a region) with appen-
ded energy consumption by source.

The model was applied to the 10-county Atlanta metropolitan
area with 1593 TAZs to demonstrate its potential. The estimated
results of residential electricity, natural gas, and other energy
consumption per capita are 19.17, 14.05, and 0.59 million BTU per
year, respectively. The results for Atlanta are consistent with
statistics for the State of Georgia [39]. Additionally, model pre-
dictions were also cross-compared with actual electricity and
natural gas utility information available for 21 zip codes. The
correlations between our model results and observed consump-
tion are 0.908 and 0.927 for electricity and natural gas use
respectively. The results also show that electricity consumption is
underestimated by 13.6%, while gas consumption is
overestimated by 5.5%. The differences are quite modest and can
be explained by the scope of the residential dataset captured in
RECS, and the mismatch in geographic unit boundaries in the
various datasets.

Ongoing energy footprint modeling efforts include integrating
this model with transportation models (hence the use of TAZ as the
geographic unit of interest), commercial buildings energy models,
and life cycle energy consumption models to obtain a compre-
hensive energy footprint of neighborhoods and local zones within
urban areas. This model only estimates residential energy con-
sumption, but the machine learning approach can be applied to
other energy sectors. The household's transportation energy con-
sumption and embodied energy (i.e., the energy embodied in the
construction and production of various products used by house-
holds) are also critical parts of the residential energy footprint, but
not included within the scope of this paper.

Another area that merits future exploration is the analysis of
the impact of alternative policy scenarios and land use forms on
urban energy consumption. Our model can inform the energy
consumption outcomes of alternative policies and urban forms.
As cities continue to absorb growing populations and economic
activity, invest in infrastructure, and implement zoning re-
quirements, building codes, road pricing, and an array of other
regulations and incentives, urban form will evolve; and so too
will energy consumption patterns. As our empirical analysis of
Atlanta demonstrates, urban form, socio-economic and de-
mographic attributes, and building stock characteristics affect
energy footprint and greenhouse gas emissions of metropolitan
areas, providing decision makers a number of policy levers that
can be exercised to foster more sustainable futures and resilient
communities.
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Appendix A. Shared Variables in RECS and PUMS data
RECS 2009 PUMS 2009

Variable Variable Descrip. Response Codes and Labels Variable Variable Descrip. Response Codes and Labels

TYPEHUQ Unit structure 1 Mobile Home BLD Unit structure 1 Mobile Home
2 Single-Family Detached 2 Single-Family Detached
3 Single-Family Attached 3 Single-Family Attached
4 Apartment with 2e4 Units 4e5 Apartment with 2e4 Units
5 Apartment with 5 þ Units 5e9 Apartment with 5 þ Units

KOWNRENT Tenure 1 Owned TEN Tenure 1e2 Owned with mortgage or clear
2 Rented 3 Rented
3 Occupied without rent 4 Occupied without rent

YEARMADE Year housing unit was built C* Year housing unit was built YBL When structure first built 01 1939 or earlier
02 1940e1949
03 1950e1959
04 1960e1969
05 1970e1979
06 1980e1989
07 1990e1999
08 2000e2004
09 2005
10 2006
11 2007
12 2008
13 2009

OCCUPYYRANGE Year range when household
moved in

1 Before 1950 MV When moved into this
house or apartment

1 12 months or less
2 1950 to 1959 2 13 - 23 months
3 1960 to 1969 3 2 - 4 years
4 1970 to 1979 4 5 - 9 years
5 1980 to 1989 5 10 - 19 years
6 1990 to 1999 6 20 - 29 years
7 2000 to 2004 7 30 years or more
8 2005 to 2009

BEDROOM Number of bedrooms C Bedrooms BDSP Number of bedrooms C Bedrooms
�2 Not Applicable

TOTROOMS Number of Rooms C Rooms RMSP Number of Rooms C Rooms
FUELHEAT Main space heating fuel 1 Natural Gas HFL House heating fuel 1 Utility Gas

2 Propane/LPG 2 Bottled, tank, or LP gas
3 Fuel Oil 3 electricity
4 Kerosene 4 fuel oil, kerosene, etc.
5 Electricity 5 coal or coke
7 Wood 6 wood
8 Solar 7 solar energy
9 District Steam 8 other fuel
21 Other Fuel 9 no fuel used
�2 Not Applicable

NHSLDMEM Number of members C Number of members NP Number of person 00 vacant
C number of person record

MONEYPY Household income 01 Less than $2500 HINCP Household income 00 No income
02e22 $2500 to $99,999 �19998 Loss of 19,998 or more
23 (with $5000 increases) C total income
24 $100,000 to $119,999

$120,000 or More
DOLLAREL Annual electricity cost C Dollars ELEP Monthly electricity cost 01 Included in rent or in condo fee

02 no charge or electricity not used
C electricity bill paid (Dollars)

DOLLARNG Monthly natural gas cost C Dollars GASP Monthly natural gas cost 01 Included in rent or in condo fee
02 included in electricity
03 no charge or gas not used
C gas bill paid (Dollars)

TOTALDOL Annual total fuel costs C Dollars FULP Annual other fuel costs 01 Included in rent or in condo fee
02 no charge or fuels are not used
C these fuel bill paid (Dollars)

*C: Continuous Variable.
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