CONSERVATION AGRICULTURE

Current Capacity: 0.75 Million ha cropland

Achievable Potential: Reduction of 0.5 Mt CO₂ in 2030

Technical Potential: Reduction of 0.7 Mt CO₂ in 2030

<u>Carbon Abatement</u> <u>Cost</u>: Ranges from 2 to 7 (2017\$/t CO_{2-e}in 2030

- In 2017, Georgia has about 1.5 million ha of cropland and majority of the cropland are distributed in the southern region.
- On average, about 50% of the current cropland are under conservation agriculture practices in Georgia (about 1.5% adoption rate).
- Higher cost to certain crops, lack of awareness and credible information, higher uncertainties are key obstacles for fully adopting conservation agriculture practices in Georgia.

Conservation Agriculture

Future trends: Base line, achievable and technical potential

-Baseline Forecast - Achievable Potential - Technical Potential

About 0.75 million ha of cropland are currently under conservation agriculture An additional 0.75 million ha of cropland available in Georgia to adopt conservation agriculture **<u>Baseline</u>** = The current adoption rate of 1.5% annual growth decreases about 0.03 MtCO₂-e in yearly emissions by 2030.

Achievable Potential = Reduction of **0.46 MMtCO** ₂-e in 2030 by doubling the baseline adoption rate between 2020 and 2030.

<u>Technical Potential</u> = Adoption of 100% cropland into conservation agriculture practices yields **0.7 MMtCO₂-e** reduction in 2030.

- + Enhanced soil health
- + Less soil erosion
- + Less water, soil and air pollution
- + Low food prices

Conservation Agriculture Achievable Potential

Substantial reductions possible by 2030

drawdown G A

Costs and Benefits of Adopting Conservation Agriculture Practices

Improvements in soil health and carbon sequestration leads to high net benefits

Stakeholder Analysis of Conservation Agriculture

Conservation Ag. Solution Interactions

Composting

Conservation agriculture practices benefits from composts by displacing fossilderived fertilizers

Plant-Rich Diet

 Conservation agriculture practices improve crop yields and reduce carbon footprints of plant-rich foods.

Conservation Agriculture: Challenges and Promising Approaches

GA

Promising Solution for Cropland in Georgia

Improved soil health enhances the long-term soil fertility for food production

- <u>Minimizes nutrient losses</u> by maintaining soli cover with minimal soil disturbance/erosion
- **Decarbonizes the soil** by crop rotation and leaving the residues in the soil.
- Increased productivity is expected in some crops due to increased soil organic matter and results in lower food prices.

Source: UGA Extension

Corresponding author:

Dr. Sudhagar Mani Professor, School of Chemicals, Materials, and Biomedical Engineering University of Georgia Phone: 706-542-2358 Email: smani@engr.uga.edu 0155F Riverbend Research Center North 110 Riverbend Road, Athens, GA, 30602

the RAY C. ANDERSON

