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Abstract How climate change might impact energy demand is not well understood, yet
energy forecasting requires that assumptions be specified. This paper reviews the literature
on the relationship between global warming and the demand for space cooling in buildings. It
then estimates two key parameters that link energy for space cooling to cooling degree days
(CDDs) using data for nine U.S. Census divisions, which is the spatial resolution of the
National Energy Modeling System (NEMS). The first parameter is the set point temperature
for calculating CDDs; the second is the exponent for representing the relationship between
changes in CDDs and changes in electricity consumption for space cooling. We find that the
best-fitting CDDs have a set point of 67 °F (19.4 °C), for both residential and commercial
buildings, rather than the conventional 65 °F (18.3 °C). Set points also vary by region, with
warmer regions tending to have higher set points. When CDDs are based on the conventional
set point, the best fitting exponent is 1.5 for both residential and commercial buildings,
indicating that space cooling is more climate-sensitive than is specified in NEMS. As a result,
the official projections of U.S. energy consumption would appear to underestimate the energy
required for space cooling.

1 Introduction

Climate change could create many difficulties for the U.S. energy system. Recent evidence
suggests that it is already doing so, particularly by creating extreme conditions that are hard to
anticipate and address (Dell, et al. 2014; IPCC 2014). These include rapid changes in energy
demand, resource availability and generation, transmission and distribution efficiency and
reliability, as well as challenges related to the energy/water/food nexus. Long term, climate
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change may also impact the settlement patterns within the U.S., potentially resulting in shifts in
populations away from low-lying coastal communities, water-scarce regions, and other areas
of the country that are most negatively impacted.

Attempts to model some of these impacts could illuminate previously unanticipated
interactions between technical aspects of the energy system, energy supply, and energy
demand. The existing literature is rich in some areas related to climate and energy use. For
example, studies of weather for short-term utility load forecasting date back at least to the
1970s, with climate change studies beginning to appear in the 1990s. Research on the heat loss
and heat gain of building structures under different climatic conditions is also well developed.

In contrast, the literature on linkages between climate, energy demand, and behavior is
much sparser and many key questions remain unanswered. Yet there are a number of areas
where behavioral differences are anticipated to impact how energy is consumed in homes and
businesses, including regional differences in thermostat settings and usage, as well as pricing
and incentive structures. Furthermore, equipment used to meet demands for heating and
cooling may react differently to changes in environmental characteristics like outdoor temper-
atures and humidity.

When climate variables are carried into energy demand modeling, many key questions
emerge. Should models use temperature data or heating and cooling degree days
(HDDs/CDDs), and if degree days are used, what is the preferred reference temperature
assumption? What is the best-fitting mathematical relationship? Should wind and humidity
be included, or are their impacts too insignificant after aggregation (Apadula et al. 2012; Sailor
2001)? What other factors need to be controlled to isolate the impact of climate change? How
sensitive are different sectors of the economy to climate change?

This paper focuses on four questions. The first two are methodological questions: what is
the value of optimizing cooling degree day (CDD) estimates by allowing the set point for
space cooling in buildings to deviate from 65 °F (18.3 °C) and what is the best-fitting
mathematical relationship between CDDs and electricity demand for space cooling in build-
ings? Based on the methodological findings, we tackle two substantive questions: what do the
methodological improvements imply about energy projections and how might an increase in
CDDs impact electricity use for cooling over the next quarter century?

2 Conclusions from the literature

2.1 Climate as a determinant of energy demand in buildings

The link between weather and energy use has been widely used to explain and forecast energy
consumption and to assist energy suppliers with short-term planning including power purchase
contracts. Extending this logic, climate change impacts need to be incorporated into regional
energy system planning to ensure an adequate supply of energy throughout the year and to
meet peak demand.

There is general agreement that a warmer climate will increase the demand for electricity,
which is the dominant source of energy for space cooling, and will decrease the end-use
demand for natural gas and fuel oil, the dominant fuels used for space heating (DOE 2013). In
addition, it is generally agreed that fossil fuel consumption in buildings is more temperature
sensitive than is electricity, because electricity is used for so many end-uses other than space
conditioning (EIA 2005).

30 Climatic Change (2016) 134:29–44

Author's personal copy



In southern states the increase in cooling will generally exceed the decrease in space heating
while in northern states (those with more than 4000 HDDs per year, specifically), the opposite
would likely be the case (U.S. Department of Energy (DOE) 2013 p. 13; USGCRP 2009).
Primary energy consumption may increase with equivalent switching from delivered heating to
delivered cooling, because of the energy-related losses associated with electricity generation,
transmission, and distribution (ORNL 2012). In addition, regional differences in the fuels used
for space heating will influence the impact of climate change on overall energy consumption.
Amato et al. (2005) investigate the implications of climate change for energy demand as a
function of region-specific climatic variables, infrastructure, socioeconomic, and energy use
profiles. Using data from Massachusetts, they find that when controlling for socioeconomic
factors, degree-day variables have significant explanatory power in describing historic changes
in residential and commercial energy demands.

More recent publications have estimated significant increases in electricity demand with
global warming. In the climate change Bside case^ completed by the Energy Information
Administration (EIA 2005) for the Annual Energy Outlook 2005, warmer winters reduced
projected total fossil fuel use by 2.4 %, but space cooling requirements increased electricity use
by 0.5 %. The estimates for the climate change side case in 2008 duplicated the 2.4 % decrease
for space heating, but resulted in a larger increase for electricity (0.7 %). Hadley, et al. (2006)
estimate that a 1.2 °C (2.2 °F), increase in temperatures in the U.S. would cause primary
energy use to increase by 2 % in 2025 over what it would have been without any global
warming. Mansur et al. (2008) estimate slightly larger effects. Their discrete choice model
estimates that a 1 °C (1.8 °F), temperature increase in January would decrease electricity use in
all-electric commercial buildings by 2.6 % (the decrease would be less where fossil fuels are
used for space heating); the same temperature increase in July would increase electricity use by
4.6 %.

Evidence to date suggests significantly regional variation in energy consumption sensitiv-
ities. Sailor (2001), for instance, found that a 2 °C (3.6 °F) temperature increase would result in
an 11.6 % increase in residential per capita electricity used in Florida, but a 7.2 % decrease in
Washington. Similarly, research by Scott et al. (1994) found that climate change had highly
variable impact on commercial building energy demand across four U.S. cities. Auffhammer
and Aroonruengsawat (2011) simulated average per-household demand increases of 65–124 %
in California by the end of the century relative to a 1980–2000 baseline, while McFarland,
et al. (2015) found that temperature increases of 3–6 °C (5.4–10.8 °F) by 2100 would increase
electricity consumption by 1.6–6.5 % by 2050.

There is general consensus that climate change will cause a much greater change in peak
demand than in total demand (EIA 2005). Sathaye et al. (2013) estimate that the peak demand
for electricity in California could increase 10–25 % by the end of the century. An analysis of
the Western Electricity Coordinating Council region by Argonne National Laboratory (ANL
2008) estimated that 34 GW of additional electricity capacity would be needed by 2050 to
meet increasing peak load requirements resulting from climate change. Such impacts can stress
the electric grid, which is already vulnerable to weather-related outages. The Executive Office
of the President (2013) estimates that between 2003 and 2012 severe weather caused power
outages that cost the U.S. economy an inflation-adjusted annual average of $18 billion to $33
billion. These costs include lost output and wages, spoiled inventory and delayed production,
as well as inconvenience and damage to the electric grid.

There is also a general recognition that residential energy consumption is more climate
sensitive than commercial energy consumption. This difference is because homes have a
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higher ratio of building envelope surface area to interior square footage, increasing the
importance of outdoor weather conditions. In contrast, energy use in commercial buildings
is dominated by internal loads and is also highly affected by the time schedule of use of the
premises (e.g., whether or not a school facility is also used in the evenings and on weekends).
In a study of 12 U.S. cities, Sailor and Pavlova (2003) found that residential electricity
consumption increased 2 to 4 % for each degree Celsius increase in ambient temperatures.
However, Sailor (2001) concludes that it is difficult to generalize without first taking into
account the many other non-climatic factors that impact energy demand.

2.2 The mathematical relationship between temperature and energy consumption

The relationship between energy consumption and temperature is modeled in different ways.
There are four principal classes of approaches: linear symmetric models, linear asymmetric
models, nonlinear models, and semi- or non-parametric models. Each model is unique in some
key aspects and has certain advantages.

A typical simplifying assumption in linear symmetric models is that energy demand
for heating and cooling use the same set point temperature and that energy demand
responds the same to a marginal change in temperature (either warmer or cooler),
producing a V-shaped relationship between temperature and energy use. This model
has historically been used in lieu of more sophisticated building model simulations in
building sciences (Day 2006).

A base temperature of 65 °F (18.3 °C), is used most often in analyzing the space-
conditioning temperature relationship. However, the actual set point temperature de-
pends on place-specific characteristics of the building stock, non-temperature weather
conditions (e.g., humidity, precipitation, and wind), and cultural preferences. The
selection of the set point temperature is critical with this approach, as it directly
changes the degree day calculations. This selection can be optimized for the specific
region and sector of the economy; for example, Amato et al. (2005) report that the set
point temperature for the commercial sector in Massachusetts was 55 °F (12.8 °C),
below the 60 °F (15.6 °C), set point temperature for the residential sector. Different
types of models use different values, which are determined in various ways (see
Brown et al. 2014).

An example of an application of this model is the National Energy Modeling
System (NEMS) utilized by the Department of Energy for national energy forecasts.
It models the impact of temperature changes on final energy use by fuel type (f),
building type (b), Census division (r), and year (y). This is done through a degree day
adjustment in the commercial and residential sectors for space cooling consumption,
as shown below.

SpaceCoolingEnergyUse f ;b;r;y ¼ SpaceCoolingEnergyUse f ;b;r;y*
DegreeDaysr;y

DegreeDaysr;2003

� �x

ð1Þ

where x=1.1 for commercial buildings and 1.5 for residential buildings.
The NEMS Reference case uses the 30-year average of heating and cooling degree-days

from the National Oceanic and Atmospheric Administration (NOAA) at the State level,
adjusted for State population forecasts, to represent future temperatures. As a result of State
population shifts, population-weighted heating degree-days are projected to decline slightly,
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and population-weighted cooling degree-days are projected to increase slightly, relative to the
weather normal average, because the population is projected to shift to States with warmer
climates (EIA 2005). Cooling receives an exponential weighting to model a non-linear
relationship between energy consumption for space cooling and temperature; heating is not
similarly treated. However, because the exponent is only 1.1 in the commercial sector (and 1.5
in the residential sector), the result is imperceptibly non-linear.

An alternative to the V-shaped linear symmetric relationship is a linear asymmetric model,
as shown in Fig. 1. The literature suggests the relationship between weather-related energy
consumption and temperature is different for heating and cooling. It is often observed that a
range of outdoor temperatures in which no indoor comfort equipment is utilized by occupants
separates the set points for heating and cooling (ORNL 2012). Hekkenberg et al. (2009), and
Shorr, et al. (2009) have incorporated comfort zones into their models, but linear models using
a single set point temperature cannot accommodate this. Figure 1b portrays a nonlinear
asymmetric relationship when a common set point is used and the exponent shown in Eq. 1
is significantly greater than 1.

Linear asymmetric models utilize ordinary least-squares regression forms to estimate the
relationship between electricity demand and temperature (Deschênes and Greenstone 2011;
Mirasgedis et al. 2006). These models tend to control for temperature or degree days, weather
variables, and sometimes a range of economic variables. This form has benefits over the V-
shaped models described earlier. While still producing linear outputs, and thus describing a
linear relationship between electricity consumption and temperature, it allows for variation in
the slope of the line on either side of the set point temperature. These researchers acknowledge
the nonlinear relationship but achieve success in estimating it through linear parametric
models. By incorporating other variables like weather and socio-economic factors, predictive
success increases, with some models achieving R2 values greater than 0.9 (Mirasgedis et al.
2006).

More complicated smooth transition regression forms have been developed to reflect the
nonlinear relationship between electricity consumption and temperature. These are typically
fixed effects polynomial OLS forms with context-dependent filters; for example, Bessec and
Fouquau (2008) control for the month of August when studying Europe to account for the
heavy vacationing that typically occurs in that month. An intensive treatment of the OLS
residuals typically follows the estimations (Bessec and Fouquau 2008), with empirically fitted

Non-linear AsymmetricbLinear Symmetrica

Fig. 1 Alternative relationships between temperature and energy use

Climatic Change (2016) 134:29–44 33

Author's personal copy



set point temperatures. The methods used allow for multiple set point temperatures, and allows
for threshold temperatures that bound minimum ranges, where energy consumption is essen-
tially flat.

Semi-parametric and nonparametric models have been used to investigate this relation-
ship as well. Engle et al. (1986) justify this approach on the basis that thermodynamics dictates
that heat loss through a barrier is proportional to the fourth power of the temperature
differential, and more importantly, that when equipment is operating at 100 %, the effect of
more severe weather cannot result in increased energy consumption unless the capacity of the
equipment is expanded. Piecewise linear spline (Engle et al. 1986), smoothed kernel regres-
sions (Henley and Peirson 1998), and semi-parametric spline estimates (Gupta 2012) have
been applied to utility sales information in the U.S. (Engle et al. 1986), household demand
response to differential pricing regimes in the U.K. (Henley and Peirson 1997, 1998), and
electricity demand in New Delhi (Gupta 2012).

The non-parametric aspects of the models provide very detailed estimates of the impact of a
change in temperature. The semi-parametric models also add parametric determinants for
income and price, as well as weather events, like rainfall. These models tend to be robust,
require significant data manipulation, and are best suited for more fuel-homogenous geogra-
phies. Perhaps as a result, fewer studies use this approach. These approaches are particularly
useful in estimating energy demand at extremes, where distance from the mean, behavioral
change, and equipment operations generate empirical deviations from the predictions of the
other model specifications.

Studies of the relationship between energy consumption and temperature tend to be fuel-
disaggregated, but demand-aggregated. In many studies, end uses in the residential, commer-
cial, and industrial sectors are not treated separately; that is, two or three sectors are treated as a
whole (Bessec and Fouquau 2008).

Disaggregation by economic sector and end use is important for several reasons, but most
importantly because end uses differ in their temperature sensitivity. In addition, disaggregation
could help policymakers understand where effective interventions could be pursued. With very
sophisticated data and methods, it is possible to construct quite accurate models for homog-
enous geographies. However, when expanding study horizons to larger regional, national, and
international scales, these methods lose utility. In such cases, asymmetric linear ordinary least-
squares models and nonlinear smooth transition regression models may provide the best model
performance. Where rich data are available at a disaggregated level, it is possible to distinguish
factors between regions and then aggregate to larger scales.

2.3 Penetration of heating, ventilation, and air conditioning (HVAC) equipment

The impact of climate change on energy demand is strongly influenced by the penetration of
HVAC equipment. This leads to regional differences in responsiveness. Warming climates will
result in the increased use of existing air conditioning (AC) equipment (e.g., greater cooling
loads to compensate for bigger indoor/outdoor temperature differentials, more hours per day of
cooling, and longer cooling seasons). Warming climates will also increase the penetration of
AC equipment.

Of course, this finding will apply less to regions where essentially all buildings already have
AC equipment. In 2009, homes in the South Census Region had nearly complete market
saturation of air conditioning (about 98 %) and 85 % of homes had central air conditioning
equipment. In contrast, the Northeast region had only about 65 % market penetration of air
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conditioning, and window/wall AC units were used in a majority (58 %) of homes with air
conditioning. The rest of the country fits somewhere between these two extremes (EIA 2013).

Hamlet et al. (2010) estimated the impact of climate change on market penetration of
residential AC in Washington and the Pacific Northwest, an area with relatively low levels of
penetration. Because the warming is greatest inland but the population density of Washington
is greatest in the coastal areas, the projected impact was low in the initial decades but became
significant by 2080.

Several international studies of the impact of increasing market penetration of air condi-
tioning have also been published. Due to expected income growth and continued electrification
in developing countries, this factor is expected to play a relatively larger role globally than in
the U.S. (Akpinar-Ferrand and Singh 2010; Isaac and van Vuuren 2009); in addition, many
countries in Europe that currently have relatively little air conditioning may see significant
growth (Auffhammer and Mansur 2012; Day et al. 2009). More generally in the U.S.,
additional penetration of air conditioning can be expected to be influenced by trends in income
distribution and electricity prices, as the poorest citizens are most likely to be without air
conditioning (Yun and Steemers 2011).

2.4 Thermostat management

Evaluations of the benefits of new cooling and heating technologies often assume specific
thermostat behaviors, or set points. California’s Title 24 Standards, for example, assume a
certain range of settings and frequency of daily changes in those settings. Until recently, data
have not been available to test such assumptions. In 2001–02, the California Energy
Commission conducted a demand response experiment that produced unique, high frequency
observations of residential thermostat settings and internal temperature measurements, which
allow testing of assumptions about thermostat behaviors. Comparing the thermostat settings
observed in the California experiment with those commonly used in policy modeling indicates
that people change cooling and heating set points much more frequently than has been
assumed. Frequent set point changes, and the extreme diversity of set point behavior across
the population, have significant energy implications. Woods (2006) uses Shannon entropy to
assess the consistency of thermostat settings, which can produce both higher and lower levels
of energy consumption than is conventionally assumed. Based on these findings, the author
calls into question the benefits of energy efficiency programs that focus on equipment
replacement and choice.

A hypothesis that thermostat settings have risen over time has been tested using a
repeated cross-sectional social survey of owners of centrally heated English houses;
however, no statistical evidence for changes in reported thermostat settings between
1984 and 2007 was found (Shipworth 2011). Contrary to assumptions, the use of
thermostat controls did not reduce average maximum living room temperatures or the
duration of operation. Regulations, policies, and programs may need to revise their
assumptions that adding controls will reduce energy use (Shipworth et al. 2010).
Occupant behavior related to choices about how often and where air conditioning is
used is important to understanding the impact of global warming on domestic cooling
energy consumption. This is broadly confirmed by path analysis, where climate is
seen to be the single most significant parameter, followed by behavioral issues, key
physical parameters (e.g., air conditioning type), and finally socio-economic aspects
(e.g., household income) (Yun and Steemers 2011).
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It is important to take into account regional impacts since global climate models
predict variable impacts across regions of the U.S., and because energy resources and
infrastructures vary across regions. Analysis of survey data shows that there is a
substantial difference in reported thermostat settings between states and regions (EIA
2009), with differences greater than 4 °F (7.2 °C), between the highest and lowest
Census divisions. For example, the average heating thermostat settings range from
65.9 °F (18.8 °C), in the Pacific division to 70.2 °F (21.2 °C) in the New England
division, and average cooling thermostat settings range from 71.3° (21.8 °C) in New
England to 75.5 °F (24.2 °C) in the Mountain division (Table 1).

A review of 15 studies highlighted the variety of ways that set points are estimated, and
their range for different sectors and regions (Table A.1). Five of the 15 studies made
exogenous assumptions about set points, and 18 °C (64 °F) was the most common choice.
Among the studies that estimated set points endogenously, they ranged widely from 12 °C
(54 °F), for California in 2004–2005 (Franco and Sanstad 2008) to 24 °C (75 °F) for U.K.
households in 1989–1990 (Henley and Peirson 1997).

3 Methodology

A three-step methodology is used to estimate the best-fitting space cooling set points for
calculating CDDs, and the best-fitting exponent to link increases in CDDs to increases in
electricity consumption for space cooling (descried in Section 3.1). We then use the “opti-
mized” exponent to evaluate the climate sensitivity of energy use for space cooling (described
in Section 3.2).

Table 1 Residential thermostat management of space cooling in the U.S., 2009 (in °F)

Census Division Daytime Temperature When
Someone is Home

Daytime Temperature When
No One is Home

Temperature
at Night

Mean*

East South Central
(ESC)

72.4 74.1 72.4 72.9

West South Central
(WSC)

73.4 75.9 73.2 74.2

South Atlantic
(SA)

73.9 75.4 73.6 74.3

Mid Atlantic (MA) 72.2 74.3 72.4 73.0

New England (NE) 71.3 71.3 71.3 71.3

East North Central
(ENC)

72.1 73.3 72.0 72.5

West North Central
(WNC)

73.1 74.8 73.2 73.7

Mountain (M) 74.8 76.9 74.8 75.5

Pacific (P) 73.6 77.1 73.7 74.8

U.S. Mean 73.0 74.8 73.0 73.6

*The Bmean^ for each Census Division is calculated by the authors by an equal weighting of the three
temperature time-of-day conditions averaged across the columns. The U.S. mean is weighted by electricity
consumption for space cooling across the nine divisions. Source: EIA 2009
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3.1 Approach to optimizing exponents and set points

Step 1: data collection Electricity sales data come from EIA-826, a database of monthly
state electricity sales by sector and utility, which enables aggregation to the nine census
divisions, matching one of the principal scales of analysis used by NEMS. Data were collected
for the 2003–2012 time period. Residential and commercial electricity sales data by state and
month are compiled for the 50 states plus DC. This enables a sectoral analysis of the
relationship between outdoor temperatures and electricity consumption. The consumption data
were de-trended for technological changes, population, and square footage, using the method
developed by Sailor and Muñoz (1997) that is similar to the approach used in NEMS.
Detrending involves the following adjustments to raw electricity consumption data. For each
state, we calculate an average annual electricity consumption for the period 2003 to 2012:

E y
� �

¼ Average state−specific annual electricity consumption ð2Þ

The sum of electricity consumption of a state over the twelve months, m, in year y divided
by the average state-specific yearly electricity consumption produces an annual adjustment
factor as shown in Eq. 3:

Fad j yð Þ ¼
X

m¼1;12
E m; yð Þ=E y

� �
ð3Þ

The electricity consumed in month m and year y over the annual adjustment factor creates
the detrended electricity consumption for month m and year y (Eq. 4):

Ead j m; yð Þ ¼ E m; yð Þ=Fad j yð Þ ð4Þ
We then estimate the electricity consumed for space cooling by identifying the Bcooling^

months typical of each state, and by estimating space cooling based on the increment of
electricity consumption occurring during those months compared with the average for non-
cooling months. The cooling months range from 2 (in ME and VT) to 6 months across most
southern states. Hourly temperature data comes from NOAA.1 Based on Thornton et al. (2013)
and following practices recommended by the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE), we use Bemblematic^ cities to represent the climate
of the nine U.S. census divisions:

• ESC – Memphis & Baltimore • ENC – Chicago & Burlington

• WSC – Memphis & Houston • WNC – Baltimore, Chicago, & Burlington

• SA – Houston, Memphis, & Baltimore • M – Boise, Helena, Phoenix, Albuquerque, & El Paso

• MA – Baltimore & Chicago

• NE – Chicago & Burlington • P – El Paso, San Francisco, & Salem

We acknowledge that these emblematic cities may not provide optimized climate represen-
tations for the nine census divisions; it would appear to be particularly problematic that two of
the cities are used to represent more than one census division. These cities may also not reflect
future climate conditions, if the climate continues to change as predicted. Nevertheless, use of

1 NOAA’s National Climatic Data Center (NCDC) http://www.ncdc.noaa.gov/
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these emblematic cites is standard practice recommended by ASHRAE for representing the
climate of the nine census divisions in the U.S.

CDDs are calculated for each of the approximately 10–15 weather stations located in each
emblematic city. The monthly values are summed and divided by the number of weather
stations to produce average monthly CDDs for each emblematic city, which is then used to
represent the states and DC in our study.

After calculating the mean daily temperature for each weather station (Tmean=0.5 (Tmax+
Tmin)), CDDs are calculated for whole degrees between 55 °F (12.8 °C) and 80 °F (26.7 °C),
using the following four-step approach.2 This approach to calculating CDDs from min and
max temperatures allows for the possibility of CDDs and HDDs occurring on the same day,
which is prohibited when the simpler NOAA method is used. These CDD data are used to
estimate Bbest fit^ set points, and associated CDDs, weighted by population and aggregated to
the census division level. They are also used to evaluate the best-fitting exponent, based on
Eq. 1.

Temperature Day value (above threshold)

Tmax≤Tthreshold 0

Tmin≥Tthreshold Tmean−Tthreshold
Tmean≥Tthreshold & Tmin<Tthreshold 0.5 (Tmax−Tthreshold)−0.25 (Tthreshold−Tmin)
Tmean<Tthreshold & Tmax>Tthreshold 0.25 (Tmax−Tthreshold)

Step 2: analysis approach The set point with the best fit to each state’s consumption
of electricity for space cooling in residential and commercial buildings was deter-
mined using least squares regression analysis. The best fitting set point was the one
with the highest coefficient of determination (i.e., adjusted R2). The first analysis
holds the set point temperature at 65 °F, following current convention. The second
analysis matches the CDD data to the electricity consumption data compiled in Step
1, using this data to empirically estimate the best fitting set point for each state in the
sample. Using the best-fitting set points, CDDs are calculated, weighted by popula-
tion, and aggregated to the census division level.

Using both the 65 °F (18.3 °C) set point and the optimized set point, we then evaluate the
best fitting exponent to insert into Eq. 1. NEMS assumes an exponent of 1.1 for residential
users and 1.5 for commercial users; in our analysis, we evaluate the best fitting exponent again
using regression analysis.

Step 3: comparison of impact of change The best-fitting version of Eq. 1 is used as a
preliminary estimation of the impact of a 10 % increase in CDDs. Based on USGCRP
(2009), such an increase would be illustrative of summers in NH resembling current
summers in NJ by mid-century. Similarly, summers in IL would resemble current
summers in AL by the same point. The expected change in climate for these regions,
as well as the United States over all, are expected to be several times larger than the
roughly 10 % increase in CDDs embodied in the USGCRP lower emissions scenario.

2 http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/faq.html#faq1.8
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3.2 Approach to assessing climate sensitivity

We use the Boptimized^ exponent in NEMS to estimate the impact global climate change
might have on energy consumption in residential and commercial buildings. NEMS Bis
arguably the most influential energy model in the United States^ (Wilkerson et al. 2013). It
is comprised of twelve modules representing supply, demand, energy conversion, and macro-
economic and international energy market factors. A thirteenth Bintegrating^ module ensures
that a general market equilibrium is achieved. Beginning with current resource supply and
price data and making assumptions about future consumption patterns and technological
development, the model carries through the market interactions represented by the thirteen
modules and solves for the price and quantity of each energy type that balances supply and
demand in each sector and region represented.

In its Commercial Demand Module, NEMS employs a least-cost function within a set of
rules governing the set of options from which consumers may choose technologies. Capital
costs are amortized using Bhurdle rates,^ which are calculated for end-uses by year for different
subsets of the population by summing the yield on U.S. government 10-year notes (endoge-
nously determined) and the time preference premium of consumers (exogenous inputs to the
model). By characterizing nearly 350 distinct commercial building technologies in nine end-
uses and eleven types of commercial buildings, across nine census divisions, the model offers
the potential for a rich examination of impacts of greater climate sensitivity of energy use for
space cooling in commercial buildings. The BReference case^ projection described in this
study uses the same computer code as the published Reference case in EIA’s Annual Energy
Outlook 2014 (EIA 2014).

NEMS 2014 models climate using a file called BKDEGDAY.TXT^ that contains HDDs and
CDDs compiled from three data sources. Historic climate (1990–11/2013) is drawn from
NOAA’s National Climatic Data Center (NCDC) data by state (except AK, DC, and HI, which
come from NOAA’s Climate Prediction Center (CPC) data. The near future (12/2013–2014)
also comes from CPC. The long-term (2015–2040) 30-year trend of full-year climate data is an
extrapolation based on the 1984–2013 data. Because the 30-year trend represents only a
modest increase in CDDs, we also use a simple off-line calculation to estimate the impact
that a higher exponent would have in a future with significant global warming, above and
beyond that represented in EIA’s Reference case forecast.

4 Findings

4.1 Optimizing exponents and set points

The optimized cooling set points range widely across nine divisions in both of the sectors
(Table 2). On average, the best fitting set point temperatures generally improved the adjusted
R2s by, on average, 3.3 %, when compared with the adjusted R2s when a 65 °F set point is
used.

In the residential and commercial sectors, the lowest best-fitting set points were in the
Pacific, New England, and East North Central Census divisions, and the highest were in the
West South Central and South Atlantic divisions. Thus, there is a tendency for warmer states to
have higher set points, presumably reflecting cultural preferences, building stock differences,
the penetration of cooling equipment, income, and electricity prices.
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This pattern is somewhat corroborated by the more aggregated data shown in Table 1,
indicating that residential consumers in New England maintained the lowest thermostat
settings across the nine Census divisions. The results of our estimates of Bbest fit^ set points
aggregated by Census division also shows that the two northeastern divisions (MA and NE)
have lower best-fitting set points than the three southern divisions (ESC, WSC and SA). When
weighting the five division means by average electricity consumption for space cooling, the
grand mean set point for both residential and commercial buildings is 2 °F higher than the
standard used in most energy-engineering models, including NEMS.

Our analysis also suggests that the best-fitting exponent is higher than the 1.1 value used by
NEMS. The weighted mean of the residential exponents is 1.49, and for the commercial
exponents, it is 1.50. In other words, the commercial buildings sector’s electricity consumption
is more climate sensitive than is modeled in NEMS. There is no consistent North–south bias to
the estimated exponents. But because they are significantly greater than 1.0, we conclude that
the form of the relationship between temperature and energy use is nonlinear asymmetric.

4.2 Assessing climate sensitivity

When NEMS is modified to incorporate a higher exponent reflecting a greater sensitivity of
space cooling electricity use to changes in CDDs, the results differ as predicted from the
NEMS Reference case forecast. In terms of energy for space cooling in the commercial sector,
the exponent of 1.5 produces a forecast of a growing gap in energy consumption, reaching
7.8 % in 2040 (see Fig. 2).

Electricity prices are forecast by the NEMS Reference case to increase as a result of
increasing fuel costs and environmental regulations. The laws of supply and demand suggest
that electricity prices would also increase, and this is indeed reflected in the NEMS forecast as
shown in Fig. 3. Specifically, our analysis suggests that the higher exponent produces

Table 2 Best fitting set points and exponents

Census Divisions Best Fitting Set Points (in °F) Best Fitting Exponents with 65 °F Set Point

Residential Commercial Mean Residential Commercial Mean*

ESC 68 67 68 0.98 −0.02 0.73

WSC 73 74 73 1.53 2.14 1.71

SA 72 72 72 1.41 1.87 1.54

MA 63 63 63 1.12 1.09 1.11

NE 61 56 59 1.76 1.56 1.69

ENC 60 59 60 1.43 0.83 1.28

WNC 69 65 68 0.78 0.71 0.76

M 62 62 62 4.18 4.03 4.14

P 52 56 54 0.62 0.63 0.63

Mean* 67.4 66.8 67.3 1.49 1.50 1.49

* The mean values are weighted by electricity consumption for space cooling across the two building sectors.
When the set points are weighted by population, the means are 64.4 °F (18 °C) (residential), 64.3 °F (17.9 °C)
(commercial), and 64.4 °F (18.2 °C) (both sectors). Weighting by electricity consumption produces higher set
points because household electricity use for space cooling is higher in southern states where set points are also
generally higher
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electricity rates that by 2040 are 0.3 % higher than in the Reference case. NEMS incorporates
only a minimal global warming trend, but it does include southward population migration.
Thus, these modest differences in consumption and prices are not surprising.

We use off-line calculations to consider how commercial electricity consumption might
alter in a future with significant global warming. We vary these future scenarios from a modest
10 % increase in CDDs, which is consistent with the Bclimate on the move^ characterizations
of the U.S. Global Change Research Program (2009), to a more substantial increase of 50 %,
representing a combination of warming temperatures and migration to warmer states.

Ceteris paribus, a 10 % increase in CDDs evaluated with a 1.1 exponent linking it to
electricity consumption would suggest an increase in residential and commercial electricity use
for space cooling of approximately 11 %. The same projections using an exponent of 1.5
would suggest a 16 % increase in electricity demand for space cooling.

With an exponent of 1.5 and a 50 % increase in CDDs, the expected change in electricity
consumption for space cooling would be 87 %, which is 31 % higher than with an exponent of
1.1. Such an increase in demand would put upward pressure on rates, causing second-order
effects that would require a model such as NEMS to evaluate. Since NEMS plays a prominent
role in U.S. energy forecasting (Wilkerson et al. 2013), it is important that its key parameters
be evaluated and improved where gaps and biases are discovered.
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5 Conclusions and remaining research gaps

Three conclusions can be drawn from this research. First, our research suggests that the best-
fitting set point for calculating CDDs in the U.S. is 67 °F (19.4 °C), two degrees higher than
the value used in NEMS. Second, set points vary by region, with warmer regions tending to
have higher set points. Finally, when CDDs are based on set points of 65 °F (18.3 °C), the
exponent linking CDD to energy use should be higher than the value of 1.1 currently used in
the NEMS commercial buildings module. Our research estimates that it should be 1.5 for both
residential and commercial buildings. The higher exponent indicates that space cooling is more
climate sensitive than is portrayed in NEMS; as a result space cooling would is underestimated
in NEMS.

Modeling climate-driven changes in U.S. energy demand has received increasing attention
over the past few decades, and a great deal of knowledge has been gained. Nonetheless, the
published literature has many gaps. First is the gap in understanding how adaptation measures
might play out. Will populations and economic activities migrate? Will consumers buy more of
their own on-site generation if the power system becomes more brittle? There are many
promising approaches for managing the risks associated with climate change (Brown 2010);
however, few researchers have explored the impact of adaptation measures on the relationship
between climate change and energy use.

The second major gap is the influence of climate change on the performance of HVAC
equipment. Little research has examined the impact of climate change on the efficiency of
heating and cooling equipment, although it is noted as an issue in ORNL (2012). In theory,
HVAC systems should run better if they have variable capacities and are able to modulate
effectively. But system efficiencies, including compressor capacity and system sizing, power
inverter characteristics, and heat exchanger sizing also impact efficiencies.3

Third, to what extent will a warming climate cause upward pressure on electricity rates and
bills? Consistent with an increase in space cooling demand that requires new capacity to meet
the peak-heavy new load, and without a commensurate increase in revenues from baseload
sales, the cost of meeting the new load could challenge electric providers. Alternative business
models for utilities need to be examined.

A fourth major gap pertains to public policies. Prospective building codes can be updated to
account for likely future climates, regulations and incentives could encourage planting urban
shade trees, using high albedo roofs, and investing in more efficient air conditioning equip-
ment could reduce energy requirements for space conditioning, but the possible range of such
impacts on the temperature sensitivity of energy demand are not well characterized.

Finally, the role of climate change tipping points, disruptive technological innovations, and
economic shocks to GDP are sometimes discussed, but are rarely modeled. Methods for
incorporating such discontinuities in system dynamics deserve more attention to properly
characterize the range of possible future climate change impacts on energy demand (Smith and
Brown 2014).

Addressing this array of research gaps will require technology-rich modeling of individual
end uses, behavioral research, and further econometric analysis.

3 Personal communications with Dr. Roderick Jackson (ORNL).
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