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Conceptualizing energy transitions

« What is an energy
transition?

O

Change in fuel
supply?

Shift in technologies
that exploit fuel, e.g.
prime movers end
use devices?
Switch from an
economic or
regulatory system
(e.g. Cuba)?

Time taken for socio-
technical diffusion?
At what scale?

Table 1
Five definitions of energy transitions.
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Definition

Source

A change in fuels (eg., from wood to coal or
coal to oil) and their assocated technologies
[e.g., from steam engines to internal
combustion engines)

Shifts in the fuel source for energy production
and the technologies used to exploit that fuel
A particularly significant set of changes to the
patterns of energy use in a society, potentially
affecting resources, Carriers, converters, and
SEIVices

The switch from an economic system
dependent on one or a series of energy sources
and techmologies to another

The time that elapses between the
introduction of a new primary energy source,
or prime mover, and its rise to claiming a
substantial share of the overall market

Hirsh and Jones |22

Miller et al. [23]

O'Conmor [24]

Fouguet and Pearson [25]

smil [26]




Conceptualizing energy transitions

What does the
academic literature
say?

“Energy transitions have
been, and will continue to
be, inherently prolonged
affairs, particularly so in
large nations whose high
levels of per capita energy
use and whose massive an
expensive infrastructures
make it impossible to greatl
accelerate their progress
even if we were to resort to
some highly effective
interventions ...”
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Table 2
The differences in timing and speed of energy transitions in Europe,
Phase-out traditional Diffusion Diffusion
renewables phase-in coal; mid point speed
Core England 1736 160
Rim Germany 1857 102
France 1870 107
Netherlands 1873 105
Periphery Spain 1919 111
Sweden 1922 06
Italy 1919 g8
Portugal 19449 135
Phase-put coal phase-in oil/gas/electricity:
Core Portugal 1966 47
Italy 1960 b5
Sweden 1963 &7
Rim Spain 1975 60
Netherlands 1962 62
France 1972 b5
Periphery Germany 1984 50
England 1979 &7




Conceptualizing energy transitions

YEARS TO SUFPLY 5%
OF ALL PRIMARY ENERGY

YEARS TO SUPPLY 25%
OF THE MARKET SHARE
AFTER REACHING 5%

MATURAL GAS

0IiL

NUCLEAR
ELECTRICITY

Coal Oil

O Years to achieve 5%

Natural gas Nuclear

m Years to achieve 25%

Centre on
Innovation
and Energy
Demand

WIND ELECTRICITY

Nuclear and wind have not reached
25 percent: photovaltaics hardly
registers.
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Conceptualizing energy transitions

Length of Formative Phases
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Fig. 1. Durations of formative phases for energy technologies are at a decadal scale
[4]. Mote: Ranges refer to alternative definitions for the start and end points of
formative phases, and so capture measurement uncertainties.
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Fig. 2. Diffusion speeds accelerate as technologies diffuse spatially. Motes; Bars
show durations of diffusion measured by cumulative total capacity installed, with
historical data fitted via a logistic growth curve and the diffusion duration expressed
as Atin years, ‘Core” is typically within the OECD; "Rim’ is typically Asian countries;
‘Periphery’ is typically other world regions. For details and data, see; [42 3],



Conceptualizing energy transitions

(initial ‘core’ markets for each technology)}
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B REFINERIES

BCOAL POWER

B HNUCLEAR POWER

B HYDRO POWER
NATURAL GAS POWER

EAIND POWER

WIET AIRCRAFT
PASSENGER CARS

& MOTORCYCLES

® E-BIKES

WWASHING MACHINES
REFRIGERATORS
LAUKDRY DRYERS
COMPALCT FLUORESCENT BULBS

® CELLPHONES

& ALL STEAR ENGINES

Diffusion durations scale with market size. Notes: X-axis shows duration of diffusion (t) measured in time to grow from 10% to 90% of cumulative
total capacity; y-axis shows extent of diffusion normalized for growth in system size. All data are for ‘core’ innovator markets. Round symbols
denote end-use technologies; square technologies denote energy supply technologies; triangular symbol denotes general purpose technologies
(steam engines). Arrows show illustrative examples of system of systems (refineries describing the rise of multiple oil uses across all sectors,
cars describing the concurrent growth of passenger cars, roads, and suburbs, and steam engines are a proxy of the growth of all coal-related
technologies in the 19th century). Arrows also highlight examples of single technologies diffusing into existing systems substituting existing
technologies (nuclear power, compact fluorescent light bulbs).
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Some peculiarities 7
 Diffusion thresholds: what % constitutes a transition (5%, 10%,
25%, 509%)7?
« Co-evolution: one isolated technology or the seamless web
(e.g. mimicry plus rail and telegraph and EVs)?
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Fig. 1. Growth of Infrastructures in the United States as a Percentage of their Maximum Network Size,

« Unit of analysis: big oil or smaller changes in ICEs, steam
engines on ships, oil lamps, oil heating boilers and furnaces?



Rethinking transitions: Can they be fast-
tracked?
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 We have seen at least five fast transitions in terms of energy

end-use and prime movers

« Examples of many rapid national-scale transitions in energy

supply also populate the historical record

Approximate size (population
affected in millions of people)

Table 4
Owverview of rapid energy transitions,
Country Technology/fuel Market or sector Period of transition Number of years from
1 to 25% market share
Sweden Energy-efficient ballasts Commercial buildings  1991-2000 7
China Improved cookstoves Fural households 10831008 B
Indonesia Liguefied petroleum gas stoves  Urban and rural 2007-2010 3
households
Brazil Flex-fuel vehicles Mew automobile sales  2004-2009 1
United States Air conditioning Urban and rural 1047-1970 16
households
Kuwait Crude oil and electricity Mational energy supply  1046-1055 2
Metherlands Matural gas Mational energy supply 1959-1071 10
Framce Muclear electricity Electricity 107 4-1982 11
Denmark Combined heat and power Electricity and heating 1976-1081 3
Canada Coal Electricity 2003-2014 11
(Ontariop

23
592
216

2
518

0.28
115
718
51
13

4 The Ontario case study is the inverse, showing how quickly a province went from 25% coal supply to zero,



Years from 1 to 25% market share

Rethinking transitions
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20 = Bubble size is indicative
of population size affected
i Air conditioning Nuclear electricity — Bhaseout of cosl
cookstoves in rural power generation
households
- Matural Gas
10 =
- y-efficient
ts in commercial
gs
CHP — Combined
Heat and Power
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Figure designed by Gert Jan Kramer, used with permission
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The pace of governed energy transitions: Agency, international @Cmmm
dynamics and the global Paris agreement accelerating
decarbonisation processes?

Florian Kern?*, Karoline S. Rogge *-"

 Historic energy transitions have not been consciously governed,
whereas today a wide variety of actors is engaged in active attempts to
govern the transition towards low carbon energy systems

 International innovation dynamics can work in favor of speeding up the
global low-carbon transition.

« The 2015 Paris agreement demonstrates a global commitment to move
towards a low carbon economy for the first time
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Cities, flexibility and pathways to carbon-neutrality
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Nordic Energy Research
Nordic Council of Ministers
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Rethinking transitions: electricity,

heat, and buildings

a. Top panel: Electricity generation
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a. Top panel: Buildings energy consumption, 2013 and 2050
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Rethinking transitions: transport fuel
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a. Top panel:
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Rethinking transitions: industrial emissions @m&g

Million Metric Tons
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Rethinking transitions

Tahle 3

Enerpy P

&

licy 102 (2017) 569-582

/ - Centre on

[ Innovation
\ and Energy
\ Demand

journal homepage: www.elsevier.com/locate/enpol

Contents lists available at ScienceDirect

Energy Policy

Contestation, contingency, and justice in the Nordic low-carbon energy @umm,k

transition

Benjamin K. Sovacool ™"

Cumulative Nordic Investments for Decarbonization by Sector, 2016-2050.

Source: Modified from International Energy Agency and Nordic Energy Research, Nordic
Energy Technology Perspectives 2016 (Paris: OECD, 2016). Assumes the Carbon Neutral

Scenario.

Sector % (USD Billion)
Energy-related investments in buildings 326

Industry 103

Transport: vehicles 1.674
Transport: infrastructure 1,111

Power: generation 197

Power: infrastructure 151

Total 3,572

The total cost of the Nordic
transition is roughly $3.57 trillion
It requires an additional
investment of only $333 billion
This is less than 1% of
cumulative GDP over the period
If you monetize air pollution and
fuel savings, it tips the economic
equation firmly in favour of the
transition



Centre on
Innovation
and Energy
Demand

Rethinking transitions: Active phaseouts?
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Accelerating low-carbon
innovation: the role for
phase-out policies
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1. Control policies

This group of policy instruments aim to
reduce carbon emissions from specific
technologies or sectors. This is either
through market mechanisms (in the LK,
examples include the carbon floor price
and EU) Emissions Trading System (ETS))

or regulation (such as mandatory energy
efficiency requirements for appliances,
vehicle emission standards, zero carbon
buildings, and a ban of incandescent light
bulbs).

2. Changing market rules

These are rules that are applied at

a broader level than control policies
and typically address a whole market,
Sector or system, OF even cross several

systems. One example is the UK's 80%
carbon reduction target, as set out in
the Climate Change Act 2008.

3. Reduced support for dominant
carbon intensive technologies or
practises

High-carbon technologies and practises
may receive support in a number of
forms. These should be acknowledged

and then reduced and removed over
time. Examples include subsidies or tax
exemptions.

4. Ensuring a balanced debate by
developing actors or networks in
emerging sectors

Incumbent industries can have a
strong influence on policy decisions,
whereas emerging innovations are
unlikely to have well developed and
influential networks. This imbalance
can be addressed by creating new

committees or networks involving
actors mainly supporting low- and zero-
carbon innovations in order to ensure
incumbents are not given unfair weight
in policy making processes.
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Global Oil Demand Growth — The End Is Nigh
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The energy transition is already
happening?

Disruptive Trend

Residential PV solar
parity’

Annua! sales [GW]

PV plus battery grid
defection?

Electric vehicle
penetration®*
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Shifts in business models and value

creation alongside technology

Increasing technical innovation

New battery chemistries
New solar PV technologies

V7,
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Synergistic solutions increasing
the value of renewables

Solar PV + battery storage
IT and storage for peak shaving

E O®

Data and internet of things
increasing integration

Sensors
Predictive software
Demand response automation

Innovative business models
increasing customer bases

No up front costs
Funnel analysis
Value beyond energy

C¢ I

Innovative financing reducing cost
of capital

Third-party financing
Green bonds
YieldCos




Concluding remarks @E%dgy
* Whether an energy transition can occur quickly or
slowly can depend in great deal about how It Is
defined, so always check sources, data,

assumptions etc.

« Causes are complex: WW?2 (France and Kuwait),
rural famine (China), 1970s oll crises (Denmark,
Brazil), demand (AC in USA)

 Future transitions could be driven by active
governance (phase-outs), scarcity, and demand
pressures, rather than supply, markets, or
abundance

* The past need not be prologue; history can be
Instructive but not necessarily predictive
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