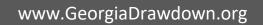
Georgia Drawdown[™]

www.GeorgiaDrawdown.org

Identifying the most promising solutions for achieving carbon neutrality in Georgia.

INTRODUCTORY WEBINAR – AUGUST 2, 2019

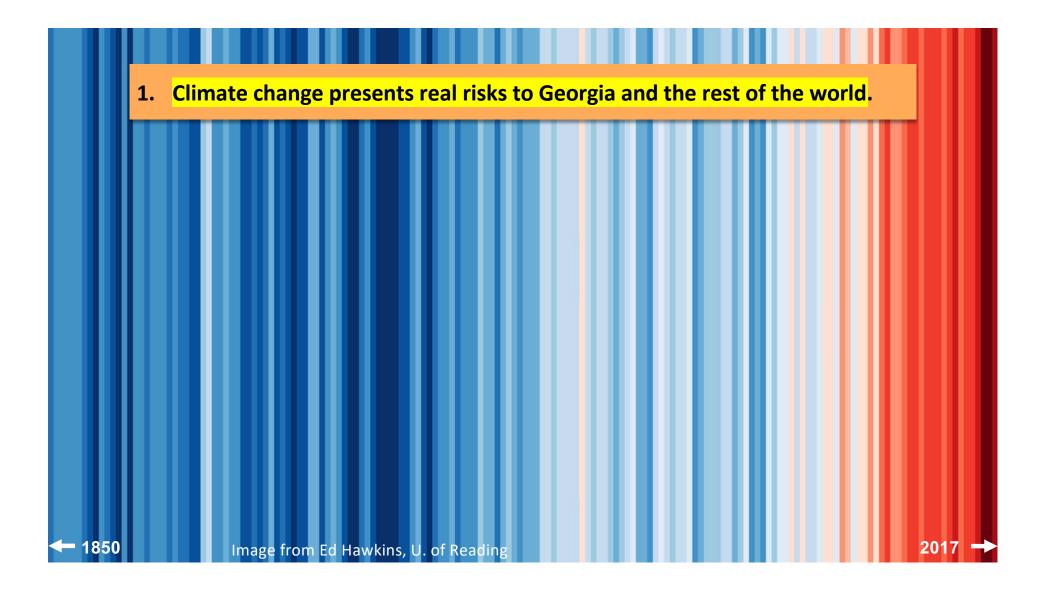

EMORY

Agenda

- 1. Motivation for Georgia Drawdown
- 2. Project Overview
- 3. Initial Work
- 4. Engagement Opportunities
- 5. Q&A

Agenda

1. Motivation for Georgia Drawdown


- 2. Project Overview
- 3. Initial Work
- 4. Engagement Opportunities
- 5. Q&A

- 1. Climate change presents real risks to Georgia and the rest of the world.
- 2. Proactively managing those risks presents real opportunities.
- 3. Addressing this challenge at scale will require creativity and innovation.

- 2. Proactively managing those risks presents real opportunities.
- B. Addressing this challenge at scale will require creativity and innovation.
- 4. **Project Drawdown pioneered this type of new thinking at the global level.**

100 SOLUTIONS TO REVERSE GLOBAL WARMING

www.drawdown.org

- 1. Climate change presents real risks to Georgia and the rest of the world.
- 2. Proactively managing those risks presents real opportunities.
- 3. Addressing this challenge at scale will require creativity and innovation.
- 4. Project Drawdown pioneered this type of new thinking at the global level.
- 5. Georgia Drawdown brings a Georgia lens to this analysis.

Agenda

- 1. Motivation for Georgia Drawdown
- 2. Project Overview
- 3. Initial Work
- 4. Engagement Opportunities
- 5. Q&A

Project Overview

GOAL

• Identify the most promising solutions for achieving carbon neutrality in Georgia.

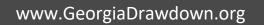
APPROACH

- Start with the 100 Project Drawdown solutions & add new solutions identified by experts and the community of stakeholders
- Identify the most promising solutions for Georgia in 3 stages, with increasing rigor and systems analysis, focused on smaller subsets of solutions
- For each solution:
 - Assess carbon reduction potential and costs in Georgia
 - Look "beyond carbon" at economic development, health, environment, and equity

GUIDING PRINCIPLES

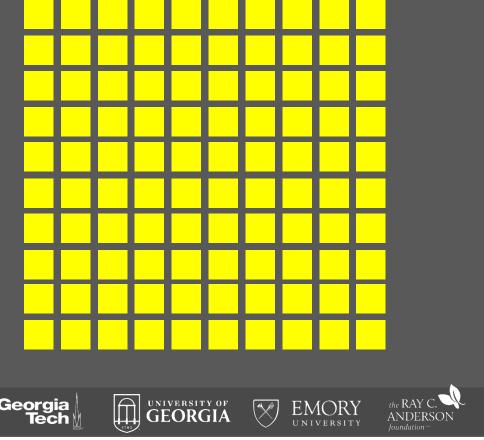
- Quantitative objective analysis
- Tap Georgia's expertise and build Georgia's network
- Be robust enough to provide a foundation for future efforts

www.GeorgiaDrawdown.org

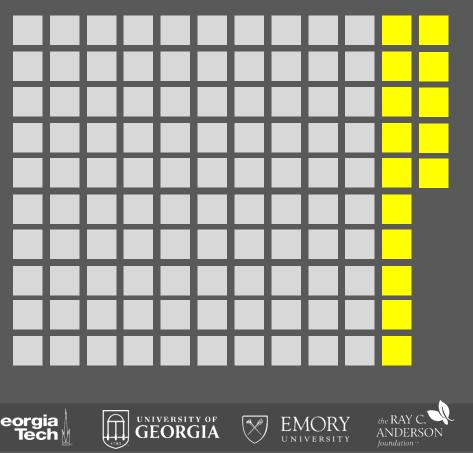

GEORGIA

Summer 2019 – Identify Top Tier of Solutions

• Develop Georgia emissions baseline



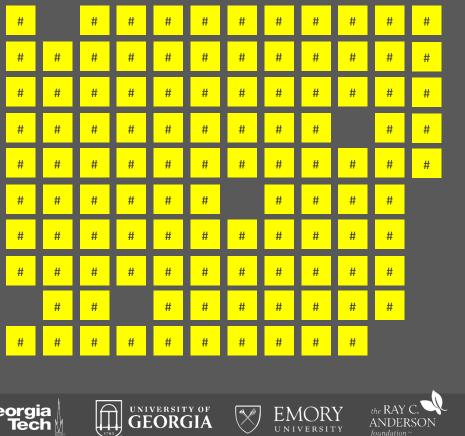
Summer 2019 – Identify Top Tier of Solutions


- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown

Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list

<u>Summer 2019 – Identify Top Tier of Solutions</u>


- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia

G

н				Н						
н				Н						
	_			-						
П				Н						
н				Н				H		
				н		Н		Н	Н	
eorgia Tecl	a ≬ h ∦		versit CORC	GIA	$\overset{-}{\bigotimes}$	EN	1OR Versit	Y Y	the RAY ANDER foundation	C. SON

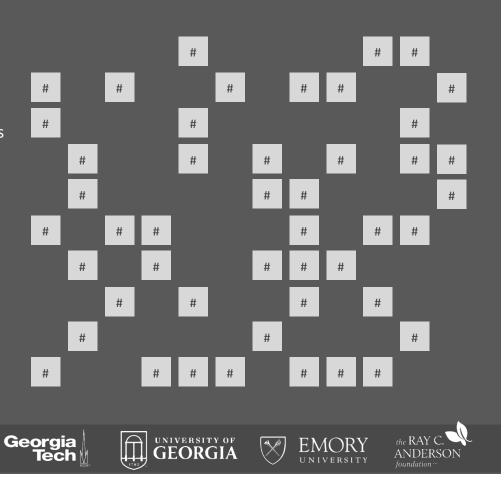
Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions

Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions

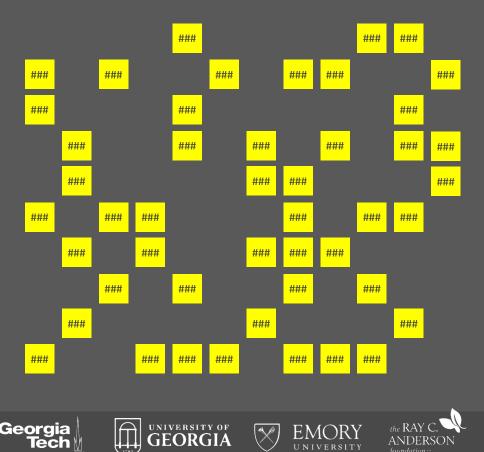
#		#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#		#	#
#	#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#		#	#	#	#	
#	#	#	#	#	#	#	#	#	#	#	
#	#	#	#	#	#	#	#	#	#	#	
	#	#		#	#	#	#	#	#	#	
#	#	#	#	#	#	#	#	#	#		



www.GeorgiaDrawdown.org

Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions
- Identify top tier of solutions for further study

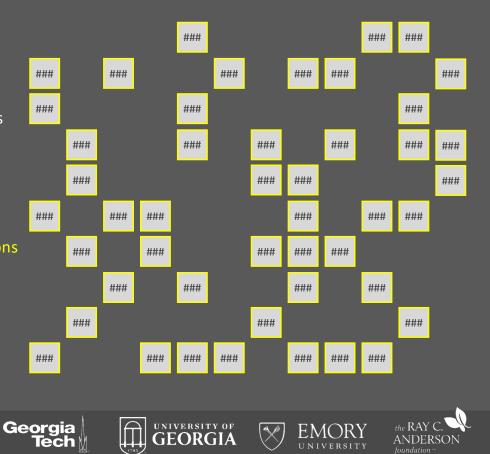


Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions
- Identify top tier of solutions for further study

Fall 2019 – Identify Subset for Final Analysis

• Detailed analysis of costs and carbon for each solution

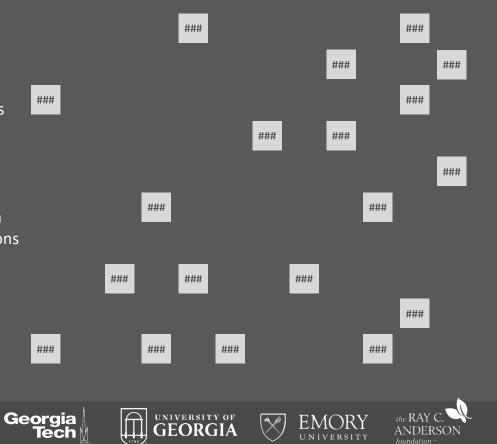


Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions
- Identify top tier of solutions for further study

Fall 2019 – Identify Subset for Final Analysis

- Detailed analysis of costs and carbon for each solution
- High level beyond carbon assessment for these solutions



<u>Summer 2019 – Identify Top Tier of Solutions</u>

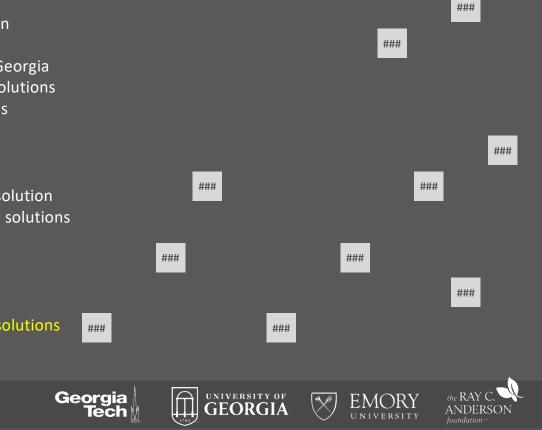
- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions
- Identify top tier of solutions for further study

Fall 2019 – Identify Subset for Final Analysis

- Detailed analysis of costs and carbon for each solution
- High level beyond carbon assessment for these solutions
- Identify subset for final analysis

Summer 2019 – Identify Top Tier of Solutions

- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions
- Identify top tier of solutions for further study

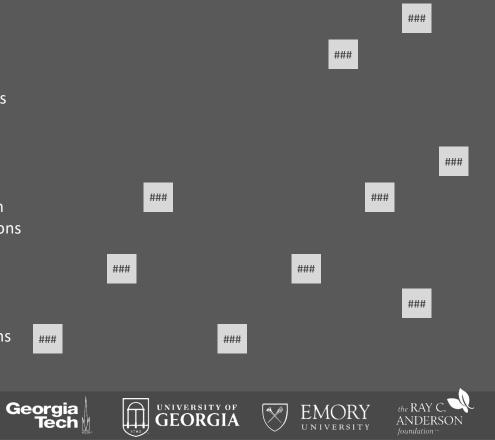

Fall 2019 – Identify Subset for Final Analysis

- Detailed analysis of costs and carbon for each solution
- High level beyond carbon assessment for these solutions
- Identify subset for final analysis

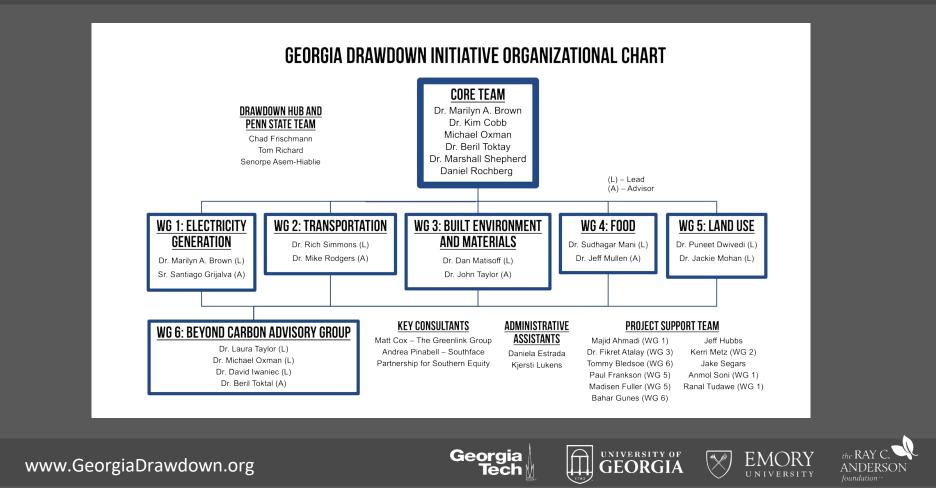
Spring 2020 – Final Analysis

- Identify top 10-12 solutions
- Detailed beyond carbon assessment for these solutions

Summer 2019 – Identify Top Tier of Solutions


- Develop Georgia emissions baseline
- Start with 100 solutions from Project Drawdown
- Add other solutions that aren't on global list
- Rule out those that are clearly not relevant in Georgia
- Gather initial data on costs and carbon for all solutions
- Gather beyond carbon information for solutions
- Identify top tier of solutions for further study

Fall 2019 – Identify Subset for Final Analysis


- Detailed analysis of costs and carbon for each solution
- High level beyond carbon assessment for these solutions
- Identify subset for final analysis

Spring 2020 – Final Analysis

- Identify top 10-12 solutions
- Detailed beyond carbon assessment for these solutions
- Interactive web portal and public roll-out

Project Overview | Team Structure

Project Overview | Core Team

Marilyn Brown Georgia Tech

Kim Cobb Georgia Tech

Michael Oxman Georgia Tech

Daniel Rochberg Emory

Marshall Shepherd UGA

Beril Toktay Georgia Tech

Project Overview | Working Group 1: Electricity Generation

Dr. Marilyn A Brown Georgia Institute of Technology Lead

Dr. Santiago C Grijalva Georgia Institute of Technology Advisor

Solutions under consideration include:

- Wind Turbines
- Solar FarmsRooftop Solar
- Geothermal
- Nuclear
- Concentrated Solar
- Wave and Tidal
- Methane Digesters
- BiomassSolar Water
- In-Stream Hydro

- Cogeneration
- Waste-to-Energy
 - Micro Wind
- Energy Storage (Distributed) +
- Energy Storage
- (Utilities) + Grid Flexibility
- Microgrids
- Artificial Leaf
- Smart Grids

- Smart HighwaysSolid-State Wave
- Energy
- Others TBD

Project Overview | Working Group 2: Transportation

Dr. Rich Simmons Georgia Institute of Technology Lead

Dr. Michael Rodgers Georgia Institute of Technology Advisor

Solutions under consideration include:

- Electric Vehicles
- Ships
- Mass Transit •
 - Trucks
- Airplanes •
 - Cars

•

۰

•

۰

- Telepresence ۰
- Electric Bikes

- Trains High-speed rail
- Hyperloop
- Ridesharing
- Autonomous Vehicles
- Walkable cities
- Others TBD

Project Overview | Working Group 3: Built Environment & Materials

Dr. Daniel Matisoff Georgia Institute of Technology Lead

The second

Dr. John Taylor Georgia Institute of Technology

Solutions under consideration include:

- District Heating + Energy
- Insulation
- LED Lighting
- Building Automation
 •
- Smart Thermostats
- Landfill Methane
- Bike Infrastructure
- Smart Glass
- Water Distribution
- Green Roofs
- Net Zero Buildings

- Retrofitting Refrigerant
- Management
- Alternative Cement
- Water Saving
- Bioplastic
- Household Recycling
- Industrial Recycling
- Recycled Paper
- Building with Wood
- Direct Air Capture
- Enhanced Weathering

Advisor

of Minerals

- Industrial Hemp
- Living Buildings
- Heat Pumps
- Others TBD
- ve Cement •

Project Overview | Working Group 4: Food

Dr. Sudhagar Mani University of Georgia Lead

Dr. Jeffrey Mullen University of Georgia Advisor

Solutions under consideration include:

- Reduced Food
 Waste
- Plant-Rich Diet
- Silvopasture

۰

- Regenerative Agriculture
- Conservation
 Agriculture
- Tree Intercropping •
- Managed Grazing
- Farmland

- RestorationImproved Rice Cultivation
- Multistrata
- Agroforestry
- System of Rice Intensification
- Composting
- Nutrient
- Management
- Farmland Irrigation

- Biochar
 - Marine Permaculture
 - Microbial Farming
 - Ocean Farming
 - Pasture Cropping
 - Perennial Crops
 - Others TBD

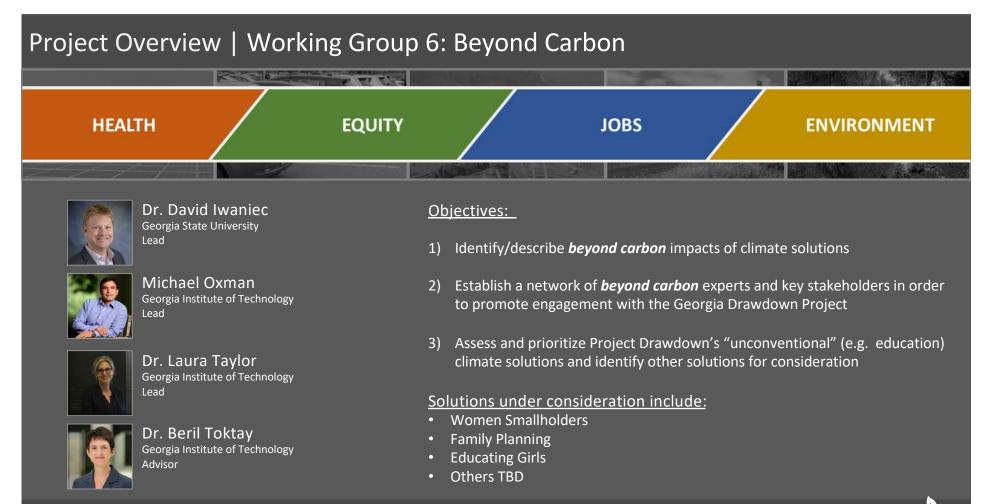
Project Overview | Working Group 5: Land Use

Dr. Jacqueline Mohan University of Georgia Lead

Dr. Puneet Dwivedi University of Georgia Lead

Solutions under consideration include:

- Temperate Forests
- Peatlands
- Afforestation
- Bamboo
- Forest Protection
- Indigenous Peoples' Land Management
- Perennial Biomass


- Coastal Wetlands
- Intensive Silvopasture
- Others TBD

www.GeorgiaDrawdown.org

EMORY

X

the RAY C

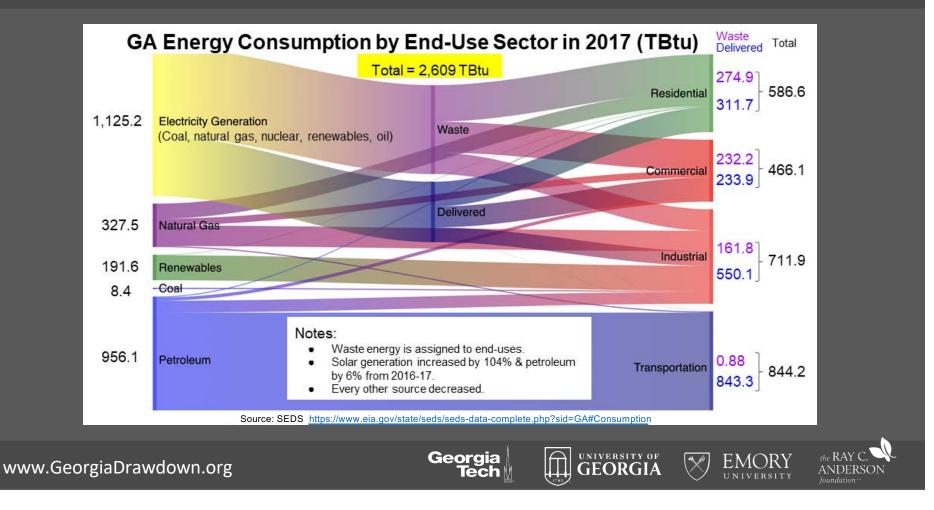
ANDERSON

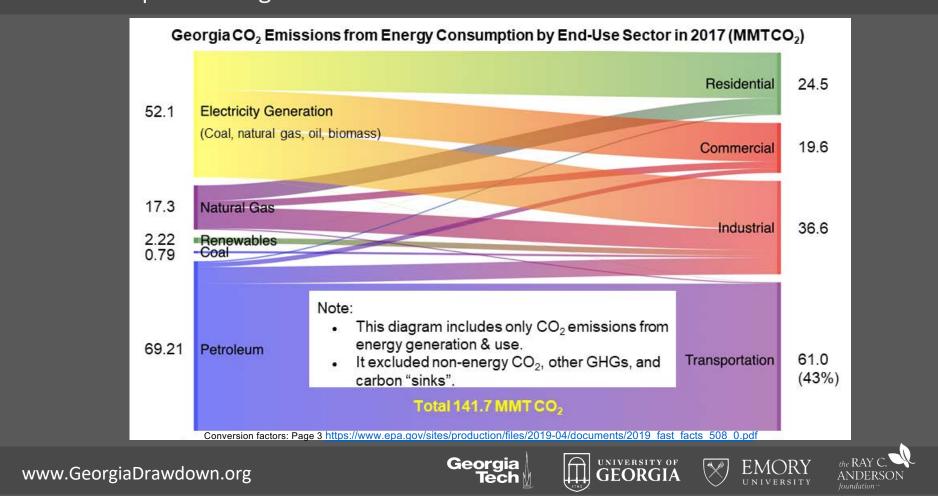
Agenda

- 1. Motivation for Georgia Drawdown
- 2. Project Overview
- 3. Initial Work
- 4. Engagement Opportunities
- 5. Q&A

Initial Work | Workshop with Project Drawdown

December 2018 – Briefing from Chad Frischmann on Project Drawdown modeling approach



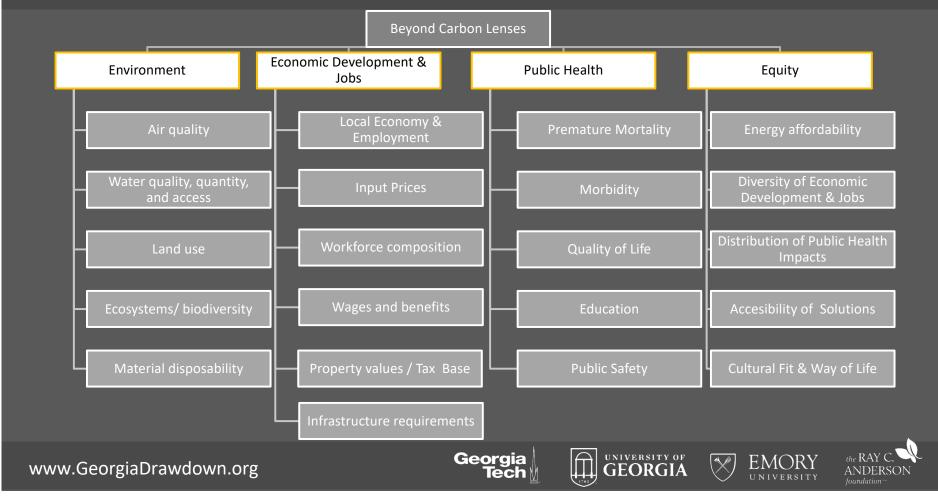


Initial Work | Baselining

Initial Work | Baselining

Initial Work | Template for Cost & Carbon Data

Basic Information			
Solution Description			
Sector	Electricity generation / transport / built environment / food / land use		
Primary actors/agents	Utilities		
whose decisions are	 Land Owners: Farms, forests and grasslands 		
most impactful	Cities and Communities		
	Individuals and Households		
	Businesses and Industries Buildings and Eacilities Owners		
	 Buildings and Facilities Owners Etc 		
Basic Inputs			-
	Description	Values	
Scenarios (vary by the	Three adoption scenarios:		
year when GHG	Plausible:		
concentrations start to	Drawdown:		
decline)	Optimum:		
Financial Inputs	For both the reference (conventional) and alternative (solution):		
	 First cost (US\$) First cost logaring rate (%) 		
	 First cost learning rate (%) Fuel exercises cost (USC) 		
	 Fuel operating cost (US\$) Fixed operating cost (US\$) 		
	 Other variable operating cost (US\$) Other variable operating cost (US\$) 		
Emissions Inputs	For both the reference (conventional) and alternative (solution):		
2	 Grid emissions (emissions associated with energy required for 		
	production) (GigatonCO ₂ eq)		
	 Fuel emissions (if fuel used) (GigatonCO₂eq) 		
	 Other direct emissions (GigatonCO₂eq) 		
	 Indirect emissions (GigatonCO₂eq) 		
			and pavel
awdown.org		$[\Delta] (\mathcal{Y}) EM($	ORY the RAY C. ANDERSON
			ERSITY foundation ::


www.GeorgiaDrawdown.org



ANDERSON

Initial Work | Beyond Carbon Scoping

Initial Work | Beyond Carbon Scoping

Agenda

- 1. Motivation for Georgia Drawdown
- 2. Project Overview
- 3. Initial Work
- 4. Engagement Opportunities
- 5. Q&A

We are looking for input!

1. What other solutions should we be considering?

Stay tuned for a questionnaire on www.GeorgiaDrawdown.org

2. How would subject matter experts rank these solutions and what beyond carbon issues should we be considering?

Working Group leads will be working with expert focus groups to get feedback via a multi-phase survey

3. Do you have data or off-the-shelf analyses that would be helpful?

If so, please contact us at drawdown@gatech.edu

www.GeorgiaDrawdown.org

GEORGIA

To reach us and stay up to date:

- Email us at drawdown@gatech.edu
- Sign up for email updates at www.GeorgiaDrawdown.org

www.GeorgiaDrawdown.org

www.GeorgiaDrawdown.org

GEORGIA

(

organized by the Georgia Climate Project

UNIVERSITY OF

conference.GeorgiaClimateProject.org

Interested in getting more involved on climate change in general? Check out the Georgia Climate Project at GeorgiaClimateProject.org/get-involved

www.GeorgiaDrawdown.org

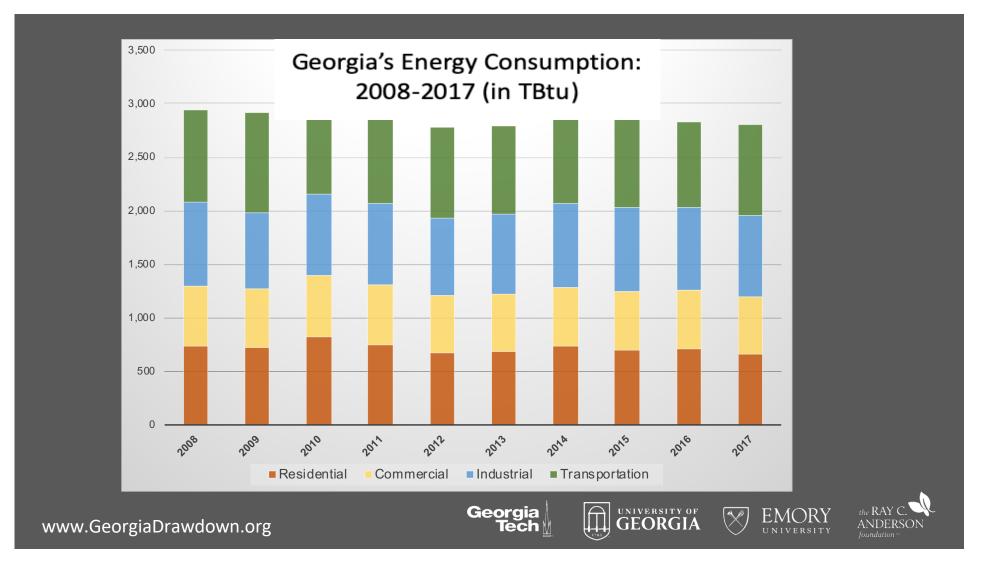
Agenda

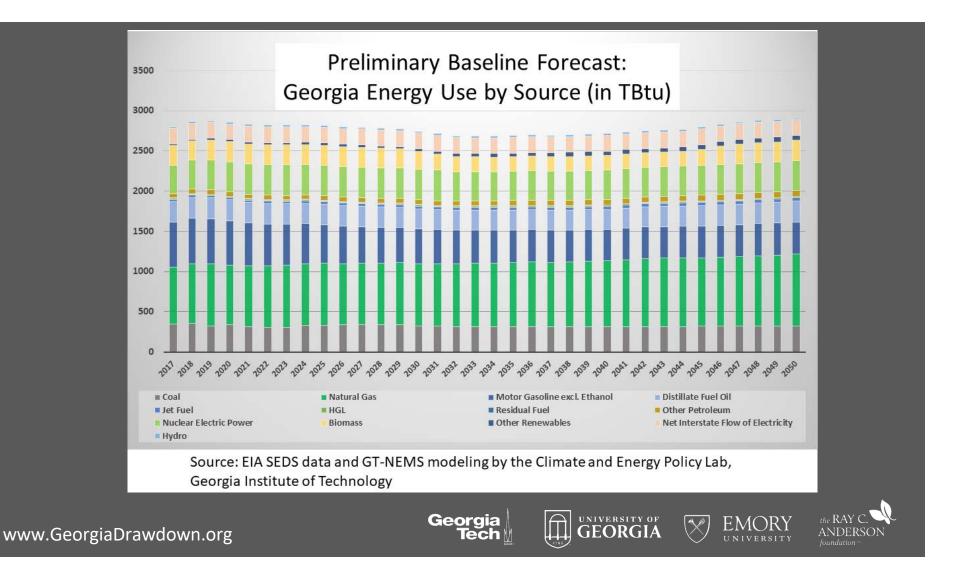
- 1. Motivation for Georgia Drawdown
- 2. Project Overview
- 3. Initial Work
- 4. Engagement Opportunities
- 5. Q&A

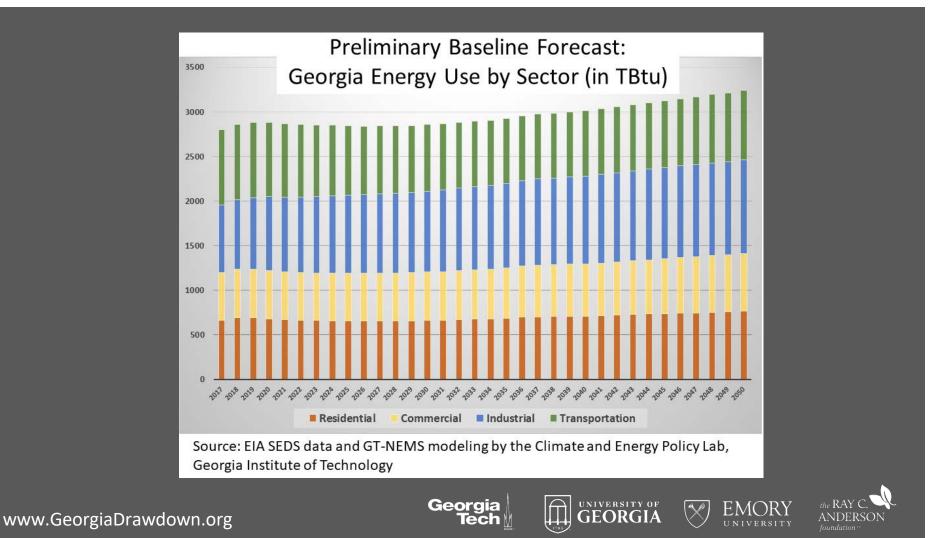
www.GeorgiaDrawdown.org

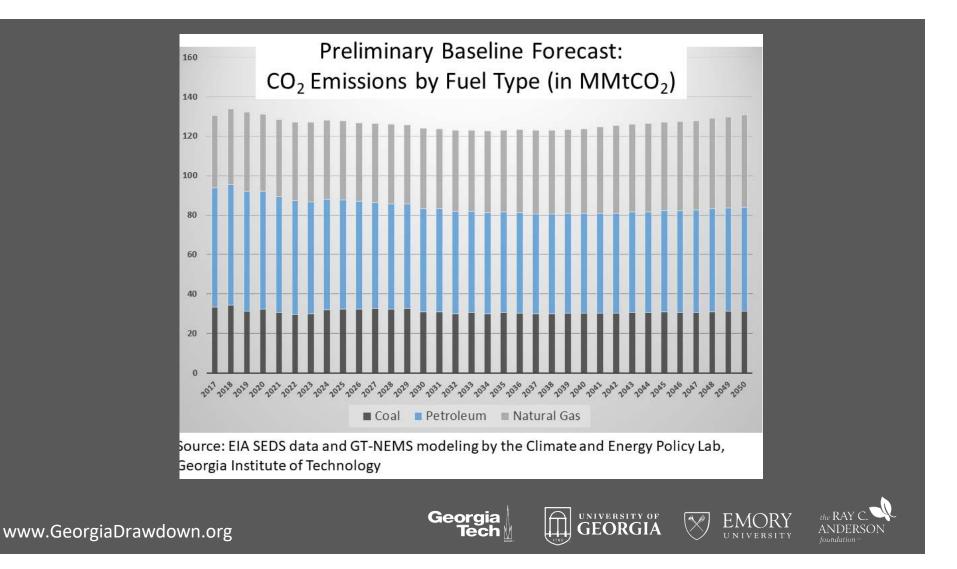
Georgia Drawdown[™]

www.GeorgiaDrawdown.org




Identifying the most promising solutions for achieving carbon neutrality in Georgia.





Extras

