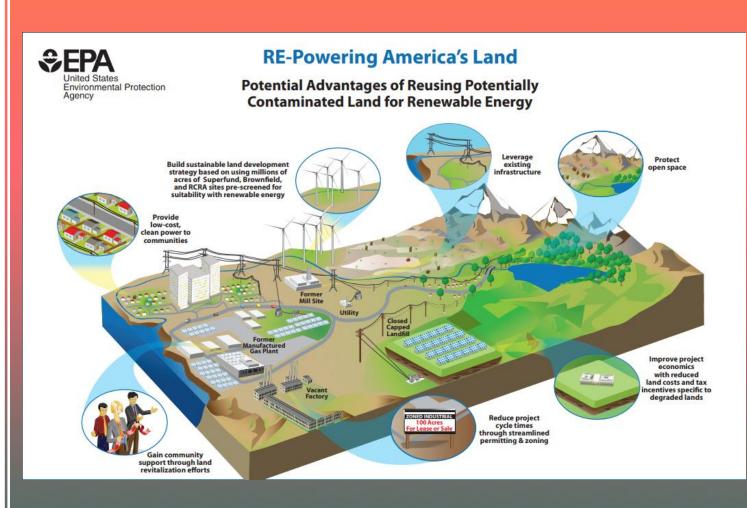
Hamilton Steimer Capstone Project: Evaluating Contaminated Lands for Solar PV with Georgia Case Study July 28th, 2020

Outcome objectives:

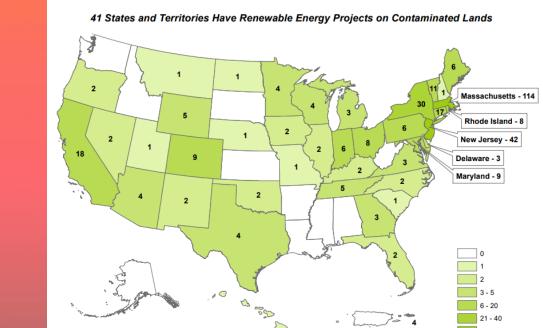
- Improve the RE-Powering dataset
- Evaluate Georgia's contaminated lands for renewable energy generation
- Provide an in-depth analysis of one specific site City of Tifton Landfill
- Discuss what types of polices other states are using that Georgia should consider

EPA's RE-Powering America's Land Initiative


Created to encourage the transformation of contaminated lands into productive renewable energy sites

Provides resources to communities, developers, or anyone interested in reusing these sites for clean energy production

Has currently identified and assessed over 130,000 sites across the country for the renewable energy potential


Why use contaminated lands for renewable energy?

- Environmental benefits
- Low-cost electricity
- New jobs
- Increased tax revenues
- Improved project economics
- Potential project incentives

Progress Around the Country

- Property Tax Exclusion for Solar Energy Systems (CA)
- Solar and CHP Sales Tax Exemption (FL)
- Renewable Energy and Energy Efficiency Portfolio Standard (NC)
- Solar Easements & Rights Laws (MA)

- 352 projects on 327 different sites
- Cumulative capacity of 1,710.2 MW
- 91% of installations are solar PV
- 64% of installations are on former landfills
- Massachusetts is number one

Adder Values

Location Based	Adders	Off-taker Based Adders				
Туре	Adder Value (\$/kWh)	Туре	Adder Value (\$/kWh)			
Agricultural	\$0.06	Community Shared Solar (CSS)	\$0.05			
Building Mounted	\$0.02	Low Income Property Owner	\$0.03			
Brownfield	\$0.03	Low Income CSS	\$0.06			
Floating Solar	\$0.03	Public Entity	\$0.02			
Landfill	\$0.04					
Solar Canopy	\$0.06					
Energy Storage	Adder	Solar Tracking Adder				
Туре	Adder Value (\$/kWh)	Туре	Adder Value (\$/kWh)			
Storage + PV	Variable	Solar Tracking	\$0.01			

- 3,200 MW declining block tariff program
- Provides Fixed Compensation
 Rates to qualifying projects
- 20-year term for projects over 25 kW
- 4 categories of compensation adders

Solar Massachusetts Renewable Target (SMART) Program

Issues with RE-Powering Database

No map of location's counted acreage

No terrain slope analysis

Questionable PV capacity density estimate

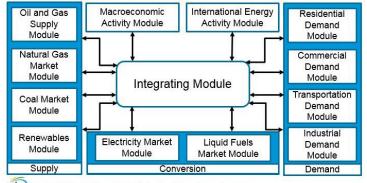

No financial information provided for considered sites

Figure 1. National Energy Modeling System

eia Source: U.S. Energy Information Administration, Office of Energy Analysis

City of Tifton Landfill – 445 Mitchell Store Road

RE-Powering lists acreage as 62.8 acres but property records suggest the landfill may be 337.19 acres large

Eligible acres = 59.7 acres

With 8 acres/MW metric = 7.46 MW solar facility

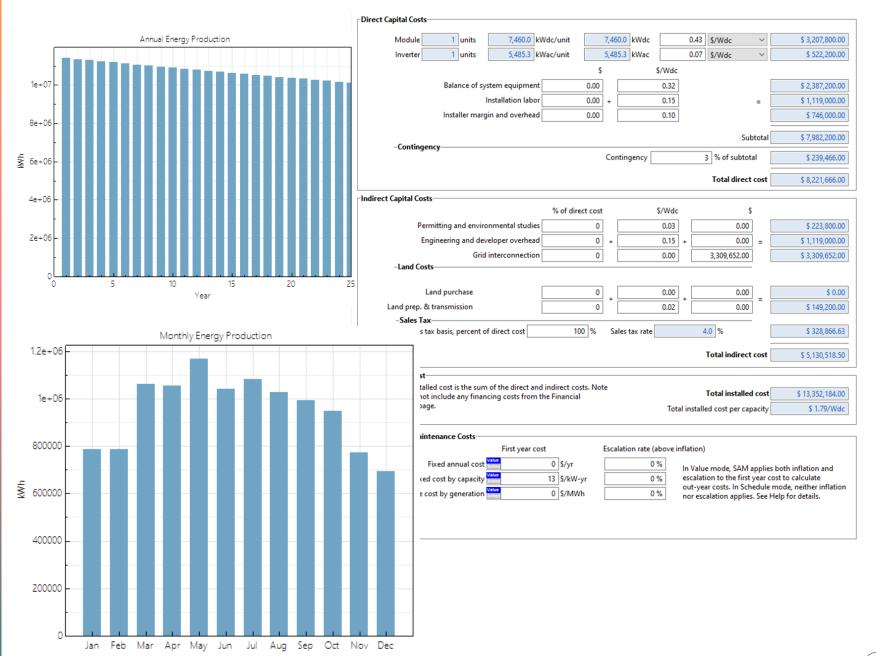
Fixed-tilt with angle of 20 degrees

Panel efficiency of 19.1%

SAM executes based on location irradiation data, system size and type, design costs, incentives, financial parameters

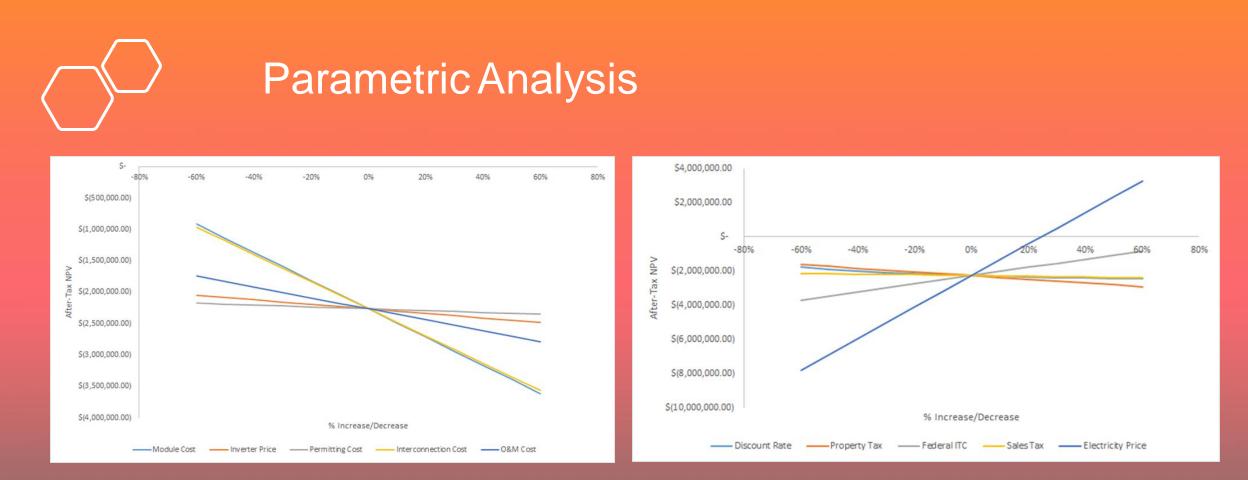
SAM Results

System costs


- Total installed cost \$13,352,184
- Grid interconnection \$3,309,652
- Cost per capacity \$1.79/Wdc

Energy production

- 11,408,784 kWh in Year 1
- Over 268 million kWh by end of life (17.5% capacity)
- If at 22% capacity 338,661,840 kWh


NPV

- \$-2,265,919
- 22% capacity would greatly improve the NPV

					2.5	50%		3%		5%				2.50%		
Year	Energy Produced (kWh)	GA Electricity Carbon Intensity (kg/kWh)	CO2 Reduction (kg)	Year	2007 \$	2020 \$	2007\$	2020 \$	2007 \$	2020 \$	Year	Project CO2 Emissions Reduction (Mt)	2020 \$ M	onetized Benefits	Discou	nted Benefits
1		0.4629		2020	62	79	42	53	12	15	2021	5201	80 Ś	416.047	Ś	416.046.79
2	11,408,800.00	0.4558	5,200,584.82	2021	63	80	42	53	12	15	2022	4981	81 \$			393,611.13
3	11,351,700.00	0.4388	4,980,881.54	2022	64	81	43	55	13	17 17	2023	5140	83 \$			406,048.18
4	11,295,000.00	0.4551	5,139,811.68	2023 2024	65 66	83 84	44 45	56 57	13 13	17	2023	5339	84 \$			416,489.14
5	11,238,500.00	0.4751	5,339,443.50	2024	68	86	45	58	13	18	2024	5408	86 \$			421,326.35
6	11,182,300.00	0.4836	5,407,737.80	2026	69	88	47	60	14	18	1011111111		-			
7	11,126,400.00	0.4832	5,376,546.27	2027	70	89	48	61	15	19	2026	5377	88 \$			418,183.35
8	11,070,800.00	0.4791	5,304,007.79	2028	71	90	49	62	15	19	2027	5304	89 \$			407,053.01
9	11,015,400.00	0.4783	5,269,175.53	2029	72	91	49	62	15	19	2028	5269	90 \$			398,949.68
10	10,960,300.00	0.4915	5,387,474.88	2030	73	93	50	64	16	20	2029	5387	91 \$	490,260	\$	402,379.39
11	10,905,500.00	0.4668	5,090,761.60	2031	74	94	51	65	16	20	2030	5091	93 \$	473,441	\$	379,097.50
12	10,851,000.00	0.4650	5,045,404.54	2032	75	95	52	66	17	22	2031	5045	94 \$	474,268	\$	370,497.42
13	10,796,800.00	0.4432	4,785,270.07	2033	76	97	53	67	17	22	2032	4785	95 \$	454,601	\$	346,471.52
14	10,742,800.00	0.4466	4,798,112.92	2034 2035	77 78	98 99	53 55	67	18 18	23 23	2033	4798	97 \$	465,417	\$	346,063.51
15	10,689,100.00	0.4436	4,741,291.53	2035	78	100	55	70 71	10	23	2034	4741	98 \$	464,647	\$	337,064.09
16	10,635,600.00	0.4404	4,683,767.02	2037	81	103	57	72	19	24	2035	4684	99 Ś	463,693	Ś	328,168.10
17	10,582,400.00	0.4356	4,610,118.51	2038	82	104	58	74	20	25	2036	4610	100 \$			318,312.80
18	10,529,500.00	0.4198	4,420,151.67	2039	83	105	59	75	20	25	2037	4420	103 \$			306,685.01
19	10,476,900.00	0.4213	4,413,805.61	2040	84	107	60	76	21	27	2038	4414	104 \$			301,676.05
20	10,424,500.00	0.4353	4,537,875.42	2041	85	108	61	77	21	27	2038	4414	104 \$			305,500.76
21	10,372,400.00	0.4385	4,548,713.62	2042	86	109	61	77	22	28	1.1547467668.4					
22	10,320,500.00	0.4374	4,514,507.16	2043	87	110	62	79	22	28	2040	4549	107 \$			304,452.07
23	10,268,900.00	0.4368	4,485,125.10	2044	88	112	63	80	23	29	2041	4515	108 \$			297,547.83
24	10,217,600.00	0.4495	4,592,816.67	2045	89	113	64	81	23	29	2042	4485	109 \$			291,071.64
25	10,166,500.00	0.4351	4,423,724.85	2046	90 92	114 117	65 66	83 84	24 24	30 30	2043	4593	110 \$	505,210	\$	293,458.54
26	10,115,600.00	0.4281	4,329,988.88	2047	93	117	67	85	24	32	2044	4424	112 \$	495,457	\$	280,774.22
		Total CO2 Reduction:	121,427,098.99	2049	94	119	68	86	25	32	2045	4330	113 \$	489,289	\$	270,515.69
				2050	95	121	69	88	26	33				Summed:	\$	8,757,444

Calculating and Monetizing Environmental Benefits

Things to Note:

- 17.5% capacity factor makes the economics of the system appear less favorable
- Interconnection and module costs are the most influential system costs
- Electricity prices and Federal ITC are the most important financial parameters

What if the SMART Program was done in Georgia?

Run	pbi_sta_amount (\$/kWh)			project_return_aftertax_npv (\$		
1	0.106645	0.83	20	\$ 5,824,570.		
2	0.04	0.83	20	\$ 768,632.00		
3 0.146645		0.83	20	\$ 8,859,120.00		
4	0	0	0	\$ (2,265,920.00		
				Net present value (after-tax) : run 1		
				Net present value (after-tax) : run 2		
8e+06				Net present value (after-tax) : run 3		
				Net present value (after-tax) : run 4		
≈ ^{6e+06}	_					
ē						
(6) (6) 4e+06 						
8 4e+06						
uli .						
12 2e+06						
o,						
0						
-2e+06						
	1 2	3	4			
	Run	number				

Closing Points

- My improved dataset better identifies eligible contaminated sites for clean energy projects
- I have found the energy production potential and environmental benefits for the eligible sites in the dataset
- The City of Tifton Landfill seems like a risky option for a new solar facility, but it could be improved given the right incentives
- SAM suggests what types of policies can improve project's NPV (tax exemptions, improved ITC, production-based incentives)
- The Georgia legislature, PSC, and local communities can better support clean energy projects in the state