Reducing Emissions from the GA State Vehicle Fleet

Formulation and Application of a Vehicle Replacement Model

Caleb Weed Master's of Sustainable Energy & Environmental Management Capstone Project

Introduction

- Research question: How much would it cost to reduce CO₂ emissions from public vehicles?
- 28% of GHG emissions came from transportation sector in 2018 (EPA)
- State fleet data acquired via Open Records Request
- Calculated life-cycle emissions for Georgia's publicly owned and operated light-duty cars, SUVS, and PUTs
- Designed a vehicle replacement model to make fleet management decisions and quantify emissions abatement costs for different market scenarios, demonstrating which policy mechanisms are most important for low-emissions vehicles

The Georgia State Fleet

- Purchased, leased, rented
- 20,264 vehicles
- 16,929 light duty (< 10,000 lbs)
- 957 medium duty (< 26,000 lbs)
- 2,378 heavy duty (> 26,001 lbs)
- Only 94 hybrids, PHEVs, & EVs

4,000

211 million miles

2,000

Cleaning the Dataset

- Focus on light-duty vehicles to refine analysis
- Vehicles lacking fuel consumption or VMT data omitted
- Lack of telematics
- Fire, medical, emergency, law enforcement, and off-road vehicles omitted
- 9,031 vehicles analyzed

3,325 cars

1,139 SUVs

4,567 PUTs

Baseline Methodology & Emissions

- Missing CO₂ was calculated via model-specific per-mile emissions rates (FuelEconomy.gov)
 - Operation conducted for 1,026 vehicles
- Upstream fuel pathway emissions calculated using GREET lifecycle model
 - Gasoline (E10), CNG, LNG, flex fuel (E85)
- Upstream vehicle pathways emissions also via GREET
 - \circ Engine types: ICE, EV, PHEV, natural gas

Tailpipe	Fuel	Vehicle	Total		
39,217 t	14,998 t	3,119 t	<u>57,336 t</u>		

Vehicle Replacement Model

- Spreadsheet model selects most economic new replacement vehicles to purchase each year
 - Assumed 15 year operational lifetime, modelled lifecycle of vehicles until MY2030
 - Tesla Model 3, Nissan Leaf, Toyota Prius, Kia Forte, Hyundai Kona (EV), Toyota RAV4, Mazda CX-5, Honda CRV, Chevy Silverado, Ford F-150, Ford F-150 Diesel, Toyota Tacoma, Rivian R1T (MY2021+)
- Increased demand modelled with increased VMT, not increased vehicle count (1% per year)
- MSRP +2% ICE, -8% EVs until 2025 (price parity)
- MPG +1.5%; grams CO₂ per mile -0.017%
- Assumed VMT replaced directly by new vehicles
- 3% discount rate

VRM - Formulation of Scenarios

- 8 unique policy/market scenarios
- Filled boxes indicate high values used
- Each scenario modelled for purchased to 2030, lifetime impacts to 2044
- 88 executions

S0	Baseline										
S1	High Fuel										
S2		EV Credit									
S 3			GHG Cost								
S4	High Fuel	EV Credit									
S5	High Fuel		GHG Cost								
S6		EV Credit	GHG Cost								
S 7	High Fuel	EV Credit	GHG Cost								

	Base Case	Extreme Case		
Gasoline Price (\$/gallon)	\$2.49	\$4.14		
Diesel Price (\$/gallon)	\$2.44	\$4.07		
Electricity Price (\$/kWh)	\$0.08	\$0.15		
EV Tax Credit	\$0	\$7,500		
GHG Cost (\$/ton CO2)	\$0	\$60		

VRM - Optimization Function & Constraints

Minimize:

Total Capital Costs + Maintenance Costs + Fuel Costs + Emissions Charges - Salvage Values

Constraints:

- 1. The quantity of each vehicle model purchased must be greater than or equal to 0
- 2. The quantity of each vehicle model purchased must be an integer value
- 3. The quantity of new cars purchased must equal the quantity of cars retired
- 4. The quantity of new SUVs purchased must equal the quantity of SUVs retired
- 5. The quantity of new PUTs purchased must equal the quantity of PUTs retired
- 6. There must be a negative change in total emissions

VRM - Example

Example model run for S0 - 2030

uantity Vehicle M&M	Capital Costs	Mntnce Costs	Fuel Cost	Fuel Consumpti	on		VMT	Tailpipe	Vehicle	Fuel		Salvage		
0 Tesla Model 3	\$0.00	\$0.00	\$0.00	. (kwh	Cars	5,641,146.94				Cars	\$265,600		
0 Nissan Leaf	\$0.00	\$0.00	\$0.00	- (kwh	SUVs	1,540,477.25		24		SUVs	\$106,000		
O Toyota Prius	\$0.00	\$0.00	\$0.00	- (gal	PUTs	3,483,800.07				PUTs	\$222,000		
332 Kia Forte	\$7,098,228.41	\$166,000.00	\$60,881.29	24,469.97	gal			1,300.47	8.	49.18				
106 Hyundai Kona EV	\$2,868,613.51	\$10,600.00	\$28,858,73	360,734.07	kwh		Total		3	165.94				
0 Toyota RAV4	\$0.00	\$0.00	\$0.00	- (gal	Cars	332		2.				Total Reduced Emissions	
0 Mazda CX-5	\$0.00	\$0.00	\$0.00	- (gal	SUVs	106						3028.96	
0 Honda CRV	\$0.00	\$0.00	\$0.00	- (gal	PUTs	185	1.1						
0 Chevy Silverado	\$0.00	\$0.00	\$0.00	- (gal									
0 Rivian RT1	\$0.00	\$0.00	\$0.00		kwh									
0 Ford F150	\$0.00	\$0.00	\$0.00	- (gal									
0 Ford F150 Diesel	\$0.00	\$0.00	\$0.00	- (gal			-	1	-				
185 Toyota Tacoma	\$5,759,449.86	\$92,500.00	\$358,003.40	143,892.04	gal			1,161.07	6	7 289.22			Total Cost 2020	Total Emissions
	\$15,726,291.78	\$269,100.00	\$447,743.42	529,096.08	1			2,461.55	18	1 504.35			\$16,443,135.20	3,146.67
													\$15,849,535.20	

Findings & Discussion

- Lowest cost under Scenario 2 (\$671/ton CO₂ abated)
- Highest cost under Scenario 5 (\$1166/ton CO₂ abated)

Findings & Discussion

- Tax credits remain crucial for EVs under modelled market scenarios
 - With tax credits, EVs become cheaper than ICEVs by 2023 (Leafs & Konas)
 - \circ S2 2,265 EVs by 2030; S7 2,737
- No competitive low-emitting PUT, but on the way
- Abatement costs way too high to justify for reducing CO₂ alone
 - Public procurement for pilot & demonstration
 - Economies of scale
- CO₂ is not the whole story!
 - CH₄, CO, SO_x, NO_x, PM, VOCs

Figure 2: Global long-term EV share of new passenger vehicle sales by region

Source: BNEF. Note: Europe includes EU, U.K. and EFTA.

Next Steps...

- Telematics device deployment for more dynamic modelling of emissions from on -road activity
 - Could help identify specific vehicle activities that should be targeted for electrification, diesel, hybrid
- Re-visit and update as electric trucks come on the market
 - $\circ \quad \ \ \text{Ford}\,\text{F-150}\,\text{EV}\,\text{in}\,\text{MY2022}$
- Attempt to quantify benefits of public procurements on EV technology costs
- Potentially expand to include M/HD vehicles as alternative technologies become available in that space

Thanks for a great year!