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A B S T R A C T

Drawing from examples in Germany, California, and Australia, we show that large scale integration of renewable
energy in existing electricity grids does not necessarily lead to cheaper electricity, the strengthening of energy
security, or the enhancement of economic equity. Indeed, efforts to integrate renewable energy into the grid can
thwart efforts to reduce chronic poverty. Planners around the world need to be cautious, pragmatic and realistic
when attempting to similarly decarbonize their energy systems.

1. Introduction

It may seem perplexing, but despite increasing electricity supply
capacity in many industrialized nations, and notwithstanding rapidly
declining renewable energy costs (especially for wind turbines and solar
photovoltaic panels), electricity prices and bills are increasing in most
countries of the world. As a case in point, the energy transition in
Germany (the much studied Energiewende) has seen non-hydro renew-
able energy increase from 15% to 35% of its fuel mix between 2010 and
2017 (Fraunhofer, 2018a). Over the same period, Germany's residential
electricity tariffs have increased by 16% (Fig. 1a), considerably more
than in most other European countries.

Similarly, California's non-hydro renewable generation grew from
11% to 26% of total generation between 2010 and 2017. Over the same
period, average residential electricity prices increased by 10% (Fig. 1b),
and state residents are paying considerably more than the national
average for their electricity (EIA, 2018a). With surplus electricity ex-
ceeding 15% and further predicted surpluses of 6% in the next three
years (Penn and Menezes, 2017), the economic principles of demand
and supply should mean that electricity rates would fall.

Australia's renewable energy development is also challenged by
rising electricity rates. Its non-hydro renewable energy grew from 4% to
9% of generation between 2010 and 2017, and over the same period,
the average residential electricity price in Australia increased by 12%
(Finkel et al., 2016) (Fig. 1c). With rising tariffs, there are more energy-

poor households (Weber and Cabras, 2017; Strielkowski et al., 2017). A
decarbonization paradox could be emerging - a situation where appar-
ently beneficial increases in electricity supply capacity coupled with a
more diversified and renewable energy mix is being achieved at the
expense of household energy security and affordability.

This paradox becomes all the more important when considering that
many countries with significant poverty also seek to adopt renewables,
including those most committed to the Paris Accord and those com-
mitted to doubling renewable energy capacity under Sustainable
Development Goal 7 (SDG7). What is more, the scale of this potential
decarbonization paradox is not trivial: as of the end of 2017, sector-
specific targets for renewable power were in place in 146 countries,
with additional targets for renewable heating and cooling and renew-
able transport in 48 and 42 countries, respectively (REN21, 2018).

2. Unintended consequences

To be sure, the decarbonization of the German, Californian, and
Australian electricity grids has brought significant benefits. Of parti-
cular note, renewable energy technologies (RETs) are labour intensive
and are thus capable of boosting employment.

For instance, Germany posted a gain of 322,000 jobs in the re-
newables sector in 2016, especially from the wind, geothermal and
bioenergy sectors (REN21, 2018). Similarly, in the U.S. energy work-
force in 2017, solar energy firms employed 350,000 individuals, and an
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additional 107,000 workers were employed in wind energy firms
(NASEO and EFI, 2018). Benefits in California extend to addressing
issues of minority representation in the workforce and improving en-
rolments into the apprenticeship programs of the 16 union locals of
electricians, ironworkers, and operators that have built most of the
renewable energy power plants in California (Luke et al., 2017). Like-
wise, Australia experienced a 33% increase in full-time employment
(FTE) in renewable energy between 2015/16 and 2016/17 (Australian
Bureau of Statistics, 2018).

Besides job creation, co-benefits of solar and wind encompass

cleaner air and water, improved health, the development of new in-
dustries, decreasing energy imports, and diversification, amongst
others. As indicative examples, the renewable energy roll-out is cor-
recting the negative environmental externalities of fossil fuel combus-
tion. About €8.8 billion of primary fuel import costs in Germany were
avoided in 2015 due to renewable energies (Kreuz and Müsgens, 2017).
Further, the continued roll-out of RETs and energy-efficiency programs
resulted in significant 6% reductions in energy intensity for both Ger-
many and Australia between 2013 and 2015 (The World Bank, 2018).

However, such gains have come at the cost of four largely unin-
tended effects: growing energy dependence, increasing renewable en-
ergy curtailment and capacity firming (defined as using conventional
generation sources like coal, natural gas and nuclear to mitigate against
the variability of wind and solar), limited greenhouse gas (GHG) re-
ductions, and increased vulnerability among some "losers."

2.1. Growing energy dependence

While decarbonization has enhanced some elements of national
energy security, it has eroded other dimensions. The Energiewende has
seen Germany become increasingly dependent on its neighbors (the
Czech Republic, Poland, the Netherlands, Belgium and France) to bal-
ance and import occasional excess power generation. In 2016, it was
reported that despite being a net electricity exporter, Germany im-
ported about 37 TWh from France (International Energy Agency (IEA),
2017).

The California grid region imports a net daily average of 201 GWh
(about 26% of its average daily demand) throughout the year from
other western regions (EIA, 2017a). This has motivated California's
Governor to propose the creation of a larger regional power planning
system. This will help to address the problem that "at certain times of
the year, California produces more solar and wind energy than it can
use, and must pay other states to take it to avoid overloading the system
and causing blackouts" (Penn, 2018).

Similarly in Australia, despite wind and PV contributing over 48%
of electricity generation for the Southern Australia region, electricity
imports increased for the southern region by 40% between 2015/16
and 2016/17 (AEMO, 2017a).

2.2. Increasing curtailment and capacity firming

Aggressive electricity decarbonization is being matched with
growing renewable energy curtailment or more capacity firming using
conventional generation sources. Using the German case again, the
curtailment rate for wind farms (defined as an involuntary reduction in
the output of a generator) rose 27-fold between 2000 and 2016 with
congestion management costs expected to remain high in coming years
(Joos and Staffell, 2018).

Similarly, in California, the 'Duck Curve' that highlights the non-
correlation between PV power production and demand over the course
of the day has seen increasing curtailment, particularly when solar
penetration exceeds 30% of the fuel mix. Between 2015 and 2016,
curtailment rates for wind and solar rose from 187 GWh to 308 GWh
per annum (CAISO, 2017).

In Australia, the growing integration of VRE has not led to a decline
in reliance on traditional generation sources (Abbott and Cohen, 2018).
For instance, in South Australia, increasing wind penetration is being
matched with increasing capacity firming necessitating the Australian
Energy Market Operator (AEMO) to mandate that a minimum level of
synchronous generation capacity be maintained online at all times for
managing system strength. Furthermore, the mandated minimum level
is subject to further increase as non-synchronous electricity generation
capacity (mostly from wind turbines) increases (AEMO, 2017b).

Fig. 1. Non-hydro renewable electricity penetration (blue bars) and residential
electricity prices (black lines) in 2010–2017 (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article).
Notes: Price data for Australia are published by fiscal year; these are averaged
across calendar years in the table for consistency across case studies.
Sources: (Fraunhofer, 2018a, 2018b; EIA, 2015, 2018c, 2017b; Anon., 2019;
IEA, 2018).
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2.3. Meager climate change abatement

In some situations, the rise of renewables has not led to a corre-
sponding reduction in greenhouse gas emissions. While renewables in
Germany's electricity grid has increased, so have CO2 emissions from its
power sector due to the increased burning of lignite to stabilise pro-
duction (Morton and Müller, 2016). As a result, Germany is set to miss
its 2020 emissions target.

In California, despite a 24%, 14% and 13% decline in GHG emis-
sions from the electricity consumed by the commercial, residential, and
industrial sectors respectively between 1990 and 2015, 2015 GHG
emissions levels were still 2% higher than 1990 levels due, in part, to
increased GHG emissions from transport and agriculture (EIA, 2018b).
In fact, California's ambitious renewable energy program notwith-
standing, the state ranked second in CO2 emissions (only behind Texas)
in the U.S. in 2015 (EIA, 2015).

In Australia, there has been a consistent increase in GHG emissions
for three years running due to 3.4%, 3.8% and 3.9% annual increases in
non-renewable electricity generation in recent years (Department of the
Environment and Energy, 2018).

2.4. Worsening vulnerability and poverty

Increases in renewable electricity can enhance some aspects of
vulnerability, creating so called political economy "losers." In contrast
to the employability positives given above, one source is the job losses
associated with the displacement of coal, natural gas and oil (due, in
part, to the non-transferability of skills) (Sovacool, 2017). While job
losses might in theory be offset by job gains in the renewables sector,
diligent planning may be required to ensure such an outcome. More-
over, others have shown that job losses can be quite localized given that
fossil fuels and renewables do not typically occupy the same space
(Renewable Energy Jobs, 2016). Additionally, there have been in-
creased costs incurred by residential households in the renewable en-
ergy market.

In Germany, for instance, the exemption of privileged electricity
consumers (industries) in 2015 from the German Renewable Energy Act
EEG surcharge of 4.8 billion euros (107 TWh in electricity terms) in-
creased the energy burden of other electricity consumers, particularly
private households with energy intensive industries in turn, benefiting
the most from the merit order effect (Fraunhofer ISE, 2018).

In California, renewable-energy mandates and its carbon cap-and-
trade program have created a regressive energy tax resulting in higher
household electricity burdens (percent of household income spent on
electricity bills). One implication of this was that in 2012, 1 million

households in California faced energy poverty with several counties
having household energy poverty prevalence rates as high as 15%
(Lesser, 2015).

In Australia, despite being a relatively new and marginal source of
electricity, complaints have raised concerns about the equity of land-
owners and contracts for hosting wind farms (Office of the National
Wind Farm Commissioner, 2017). When contracts are perceived as
unfair, social consequences can be severe, both in terms of fracturing
support for the wind farm within the community as well as dividing the
community in economic terms. There has also been concerns arising
from consumers in Victoria paying as high as 21% more on average for
energy (Abbott and Cohen, 2018).

3. Policy implications

Don't get us wrong. Expanding renewable electricity in most if not
all countries is the right choice, especially when one considers the
seriousness of climate change and the monumental and mounting costs
of fossil fuels. There is also growing, compelling evidence that we can
accelerate transitions in ways unimaginable a few decades ago, and
acknowledgement that transitions are non-linear and can produce sur-
prises and manifest unintended consequences (Sovacool and Geels,
2016). To this end, we propose three suggestions for future develop-
ments.

First, a sequential displacement model for the low-carbon energy
transition offers opportunities to address justice concerns while accli-
matizing to renewables (see Fig. 2). Rather than disruptive policies
implemented without sensitivity to vulnerable groups, a sequential
displacement can achieve significant CO2 reductions while reducing
electricity bills. For instance, it could capitalize on the benefits of
natural gas and energy efficiency while moving more gradually to re-
newables while they continue to improve and become more affordable.
Acknowledging the inherent geopolitical tensions its use creates, nat-
ural gas may offer an attractive initial displacement for coal (with
significant environmental benefits), especially when its availability is
within reach and methane leakage is controlled (Gilbert and Sovacool,
2017). Coupling these supply-side transitions with stronger demand-
side programs to help retrofit houses and deploy more efficient-energy
devices can prevent electricity bills from rising (Brown et al., 2017).
Moreover, subsidising energy-efficiency initiatives especially for the
poor and vulnerable and providing ample time for households and
businesses to accrue significant savings may be a powerful motivator of
broad support for subsequent transition initiatives.

Secondly, reconfiguring the existing energy landscape rather than
an overhaul can achieve decarbonization as well as stability in the

Fig. 2. Sequential displacement decarbonization strategy
(VRE - Variable Renewable Energy).

Fig. 3. Hybridisation decarbonisation strategy.
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electricity sector. Greater hybridization between dominant carbon in-
tensive energy systems and emerging innovations in storage and digi-
tization (Geels, 2018) can support low-carbon energy transitions. For
instance, the careful decoupling of coal power stations could begin with
the integration of coal with carbon capture and sequestration (CCS) or
with closed-loop biomass (see Fig. 3). High initial investment costs
notwithstanding, the reconfigured energy systems still ensure that (1)
any necessary electricity cost increment is not detrimental to con-
sumers, (2) job losses (especially associated with non-transferrable
skills) can be effectively minimized and adequately compensated, (3)
system stability can be maintained, and (4) significant CO2 emissions
can still be achieved.

Finally, consumers still offer great potential for significant energy
demand reduction in low-carbon energy transitions. As one tool to
engage the consumer as a low-carbon agent, smart meters coupled with
time-of-use tariffs, solar PV, and mobile (i.e., electric cars) and sta-
tionary storage - along with the suite of initiatives that support them -
can facilitate both reductions in household consumption and an ex-
pansion of low-carbon supply. Similarly, the effective utilization of
wind and solar can be enabled by the direct load control (DLC) of
heating, ventilation, and cooling, and the bidirectional charging of
electric vehicles.

4. Conclusion

Although critical of renewable energy policies and practices to some
degree, we have not sought to dismiss the ambition of the low-carbon
energy transition. Rather, our criticisms have a target in mind: create
more equitable, egalitarian, and pro-poor low-carbon transition po-
licies. Considering the likely irreversible momentum of variable re-
newable energy (Obama, 2017), we advise caution and a more people-
centric approach. In formulating decarbonization pathways, policy-
makers must critically evaluate such policies to ab initio pre-empt likely
and potential fall-outs and provide commensurate compensation for
"losers".

Admittedly, our paper is the product of an international scan of
renewable energy policies and data by experts in the field, identifying
some common and concerning trends. It is not a modeling exercise with
simulated counterfactuals or matched treatments and controls, but
there is an underlying literature that the authors draw on and have
contributed to, which provides robustness to our interpretations

While it may be infeasible to exhaustively determine unintended
consequences of low-carbon energy transition pathways, fall-outs we
contend must not emanate from irrational or short-sighted decisions.
This we conclude is necessary in facilitating a just, result-oriented, and
sequential low-carbon energy transition, one that does not cut carbon at
the cost of the most vulnerable members of society.
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