Learning from Climate Big Data: the Case of Climate Impacts on US Agriculture.

Emanuele Massetti

Georgia Institute of Technology

Rimini Conference on the Economics of Climate Change April 29, 2017

Outline

Introduction

Methods

Data

Preliminary Results

Conclusions

Outline

Introduction

Method:

Data

Preliminary Results

Conclusions

Introduction

- ► The econometric literature on climate change impacts has used very simplistic characterization of climate.
 - ► Mostly temperature and precipitations.
 - Very limited work on extreme events.

- ▶ Partial representation of climate impacts.
- ▶ Possibility of omitted-variables as climate variable are correlated.
 - ▶ In both cross-section and panel methods with fixed effects.

Introduction

- ► The econometric literature on climate change impacts has used very simplistic characterization of climate.
 - ► Mostly temperature and precipitations.
 - Very limited work on extreme events.

- ▶ Partial representation of climate impacts.
- ▶ Possibility of omitted-variables as climate variable are correlated.
 - ▶ In both cross-section and panel methods with fixed effects.

Introduction

- ► The econometric literature on climate change impacts has used very simplistic characterization of climate.
 - ► Mostly temperature and precipitations.
 - Very limited work on extreme events.

- ▶ Partial representation of climate impacts.
- ▶ Possibility of omitted-variables as climate variable are correlated.
 - ▶ In both cross-section and panel methods with fixed effects.

Examples

- ► Heat waves are not random.
- ► Omission of humidity, wind and other variables biases temperature coefficients (Zhang et al., 2017).

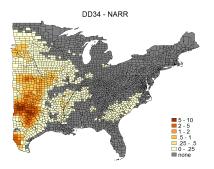


Figure 1: Extreme Heat Days

Characterizing Climate

- In previous work I have used observational data on extreme weather events
 - ► No significant effect on agricultural land values.
 - Significant effects on crop yields.

- ▶ In this paper I use a large set of raw climate variables to study agricultural land values.
- ▶ Goals
 - Better characterization of climate-agricultural productivity relationship.
 - Exploratory analysis of "big data" methods to climate change research.

Characterizing Climate

- In previous work I have used observational data on extreme weather events
 - ► No significant effect on agricultural land values.
 - Significant effects on crop yields.

- In this paper I use a large set of raw climate variables to study agricultural land values.
- ▶ Goals
 - Better characterization of climate-agricultural productivity relationship.
 - Exploratory analysis of "big data" methods to climate change research.

Outline

Introduction

Methods

Data

Preliminary Results

Conclusions

OLS Regression

- ► Standard pooled panel Ricardian regression
- ▶ Log of land value per hectare in county *i* at time *t* regressed of climate and other control variables:

$$y_{it} = \beta_0 + \beta_C \mathbf{C}_i + \beta_G \mathbf{G}_i + \beta_Z \mathbf{Z}_{it} + \sum_{t=1}^{T} d_t YEAR + \sum_{s=1}^{S} d_s STATE + u_{it}$$

- ► **C**_i: vector of climate variables;
- ► **G**_i: vector of geographic and soil characteristics;
- ► **Z**_{it}: vector of time-varying socio-economic variables;
- $ightharpoonup d_t$: time dummies;
- $ightharpoonup d_s$: state dummies.

OLS with many variables

- ► If model is well-specified
 - ► OLS estimates have low bias
 - ▶ If n >> k OLS also has low variance.
- ► As *k* increases, OLS regression leads to *overfitting*, with high variance and poor out-of-sample accuracy.
 - A small change in the data used for the regression leads to a large change in the coefficients.
- ► If k > n there is not a unique set of coefficient: the variance is infinite.

Shrinkage Methods

- ► Some methods allow to *constraint* or *shrink* the estimated coefficients with little increase in bias and large reductions in variance.
- ▶ Some variable are irrelevant: variable selection.

- ► Subset selection
 - ► Select a subset of the *p* predictors, then use LS.
- Shrinkage
 - ▶ Use all *p* regressors, but irrelevant regressors are shrunken towards zero, or to zero (variable selection).
- ▶ Dimension reduction
 - ▶ Project p predictors into a M-dimensional subspace, where M < p.

Shrinkage Methods

- ► Some methods allow to *constraint* or *shrink* the estimated coefficients with little increase in bias and large reductions in variance.
- ▶ Some variable are irrelevant: variable selection.

- Subset selection
 - ► Select a subset of the *p* predictors, then use LS.
- Shrinkage
 - ▶ Use all *p* regressors, but irrelevant regressors are shrunken towards zero, or to zero (variable selection).
- Dimension reduction
 - ▶ Project p predictors into a M-dimensional subspace, where M < p.

Shrinkage Methods

- ► Some methods allow to *constraint* or *shrink* the estimated coefficients with little increase in bias and large reductions in variance.
- ▶ Some variable are irrelevant: variable selection.

- Subset selection
 - ► Select a subset of the *p* predictors, then use LS.
- Shrinkage
 - ► Use all *p* regressors, but irrelevant regressors are shrunken towards zero, or to zero (variable selection).
- ► Dimension reduction
 - ▶ Project p predictors into a M-dimensional subspace, where M < p.

The Lasso

- ► Shrinkage and variable selection.
- ▶ The lasso coefficients $\widehat{\beta}^L_{\lambda}$ minimizes the quantity

$$\sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j| = RSS + \lambda \sum_{j=1}^{k} |\beta_j|.$$

► Intuition:

- ▶ Minimize RSS given constraint on coefficients.
- Variables that contribute little or nothing to explaining the dependent variable are dropped.

Relationship with LS

- ▶ With $\lambda = 0$: LS
- As λ increases, the model starts shrinking coefficient: variance declines while bias increases.
- ▶ If λ is sufficiently large some coefficients are set to zero.

The Lasso

- ► Shrinkage and variable selection.
- ▶ The lasso coefficients $\widehat{\beta}^L_{\lambda}$ minimizes the quantity

$$\sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j| = RSS + \lambda \sum_{j=1}^{k} |\beta_j|.$$

- ► Intuition:
 - Minimize RSS given constraint on coefficients.
 - Variables that contribute little or nothing to explaining the dependent variable are dropped.
- ► Relationship with LS
 - ▶ With $\lambda = 0$: LS
 - As λ increases, the model starts shrinking coefficient: variance declines while bias increases.
 - ▶ If λ is sufficiently large some coefficients are set to zero.

The Lasso

- ► Shrinkage and variable selection.
- ▶ The lasso coefficients $\widehat{\beta}_{\lambda}^{L}$ minimizes the quantity

$$\sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j| = RSS + \lambda \sum_{j=1}^{k} |\beta_j|.$$

- ► Intuition:
 - Minimize RSS given constraint on coefficients.
 - Variables that contribute little or nothing to explaining the dependent variable are dropped.
- ► Relationship with LS
 - ▶ With $\lambda = 0$: LS
 - As λ increases, the model starts shrinking coefficient: variance declines while bias increases.
 - ▶ If λ is sufficiently large some coefficients are set to zero.

Outline

Introduction

Methods

Data

Preliminary Results

Conclusions

Agricultural Data

- ► Agricultural data from US Census of Agriculture
- ► Socio-economic data from US Census Bureau and other sources
 - ► As in Massetti, Mendelsohn and Chonabayashi (2016).
- ► Climate data from North American Regional Reanalysis
 - ► 1979-2011 reanalysis data
 - 3-hour time step
 - ► 32 x 32 Km grid (average over counties)

Climate Variables

- ► Total Precipitation (kg/m²)
- Convective Available Potential Energy (J/kg)
- ► Categorical Freezing Rain ([yes=1, no=0])
- ► Categorical Snow ([yes=1, no=0])
- ► Downward Longwave Radiation Flux (W/m^2)
- ▶ Downward Shortwave Radiation Flux (W/m²)
- ► High Level Cloud Cover (%)
- ▶ Storm Relative Helicity (m^2/s^2)
- ► Low Level Cloud Cover (%)
- ► Mid Level Cloud Cover (%)
- Mean Sea Level Pressure (ETA model) (Pa)
- ▶ Precipitation Rate $(kg/m^2/s)$

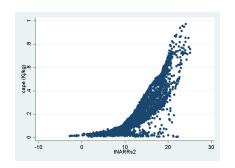
- ► Surface Pressure (Pa)
- ► Tropopause Pressure (Pa)
- ► Pressure Reduced to MSL (Pa)
- ► Relative Humidity (%)
- ► Snow Depth (m)
- ► Snow Cover (%)
- ► Soil Moisture Content (kg/m²)
- ▶ Specific Humidity (kg/kg)
- ▶ 2-m Temperature ($^{\circ}C$)
- ► Surface Temperature (° C)
- ▶ Upward Longwave Radiation Flux (W/m^2)
- ▶ U-component of Storm Motion (m/s)
- ▶ Upward Shortwave Radiation Flux (W/m^2)
- ▶ Vertical Speed Shear (1/s)

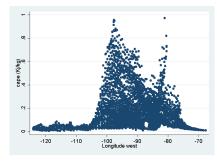
Correlations

	Υ	Temp	Precip
Temperature	0.016		
Precipitations	0.547	0.4	
Convective Available Potential Energy	0.003	0.841	0.471
Categorical Freezing Rain	0.314	-0.481	0.098
Categorical Snow	0.004	-0.767	-0.28
Surface Pressure	0.431	0.465	0.628
Tropopause Pressure	-0.019	-0.948	-0.41
Downward Longwave Radiation Flux	0.244	0.892	0.648
Storm Relative Helicity	-0.198	-0.321	-0.213
Pressure Reduced to MSL	0.573	0.275	0.787
Relative Humidity	0.597	0.002	0.734
Snow Depth	-0.076	-0.725	-0.357
Snow Cover	-0.08	-0.74	-0.437
Upward Longwave Radiation Flux	-0.068	0.991	0.302
U-component of Storm Motion	0.258	-0.722	-0.039
Vertical Speed Shear	0.534	-0.098	0.443

Climate Variables - CAPE

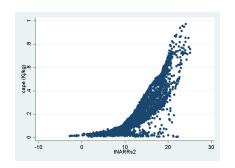
- ► CAPE Convective Available Potential Energy
 - An indicator of atmospheric instability, which makes it very valuable in predicting severe weather.
 - ► Extreme CAPE can result in explosive thunderstorm development.

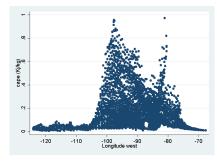




Climate Variables - CAPE

- ► CAPE Convective Available Potential Energy
 - An indicator of atmospheric instability, which makes it very valuable in predicting severe weather.
 - ► Extreme CAPE can result in explosive thunderstorm development.





Storm Relative Elicity - SRH

- ► **SRH** Storm Relative Elicity.
 - A measure of the potential for cyclonic updraft rotation in right-moving supercells.
 - More than likely become a supercell and possibly spawn one or more tornadoes.
 - ▶ There is no clear threshold value for SRH when forecasting supercells.

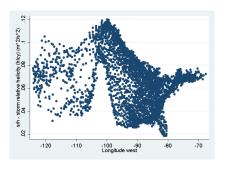
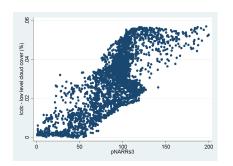
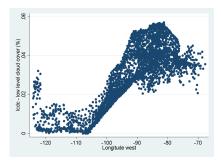


Figure 2: SRH in Spring and Longitude.

Cloud Cover - Low, Middle and High Elevation

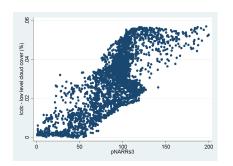
- ► Cloud Cover Low, Middle and High Elevation.
 - ► Correlated with precipitations (+) and temperature (-).
 - ► Very strong regional patterns.

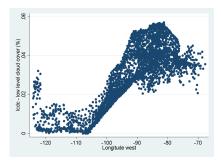




Cloud Cover - Low, Middle and High Elevation

- ► Cloud Cover Low, Middle and High Elevation.
 - ► Correlated with precipitations (+) and temperature (-).
 - ► Very strong regional patterns.

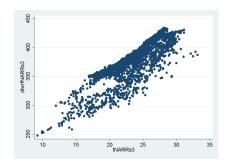


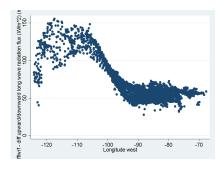


Radiative Flux

► Radiative Flux:

- Short wave: diffuse reflection of incident shortwave radiation by the underlying surface.
- ► Long wave (upward and downward): explains temperature inversion and fog formation (enters independently and as difference).

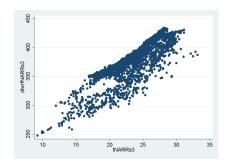


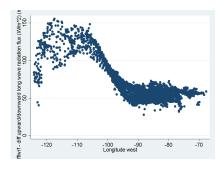


Radiative Flux

► Radiative Flux:

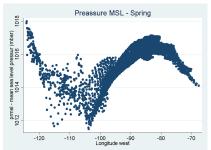
- Short wave: diffuse reflection of incident shortwave radiation by the underlying surface.
- ► Long wave (upward and downward): explains temperature inversion and fog formation (enters independently and as difference).

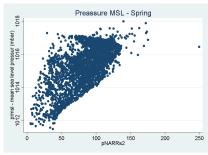




Mean Sea Level Pressure

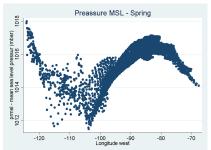
- ► The mean sea level pressure (MSLP) is the average atmospheric pressure at sea level.
- ▶ This is the atmospheric pressure normally given in weather reports.
- ▶ Pressure systems cause weather experienced locally.
 - ► Low-pressure systems are associated with clouds and precipitation that minimize temperature changes through the day.
 - High-pressure systems normally associated with dry weather and mostly clear skies with larger diurnal temperature changes.

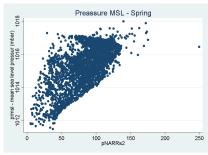




Mean Sea Level Pressure

- ► The mean sea level pressure (MSLP) is the average atmospheric pressure at sea level.
- ▶ This is the atmospheric pressure normally given in weather reports.
- ▶ Pressure systems cause weather experienced locally.
 - ► Low-pressure systems are associated with clouds and precipitation that minimize temperature changes through the day.
 - High-pressure systems normally associated with dry weather and mostly clear skies with larger diurnal temperature changes.





Outline

Introduction

Methods

Data

Preliminary Results

Conclusions

Importance of Additional Climate Variables in OLS

	Star	Standard Model		Climate Enhanced Model		
	Marginal	95% CI	Marginal	95% CI		
Temperature (°C)						
Winter	-0.216	[-0.272 , -0.161]	0.104	[-0.01, 0.218]		
Spring	0.125	[0.068 , 0.182]	-0.097	[-0.26 , 0.065]		
Summer	-0.307	[-0.356 , -0.259]	-0.026	[-0.22, 0.168]		
Fall	0.347	[0.27 , 0.424]	0.083	[-0.099 , 0.265]		
Annual	-0.052	[-0.085 , -0.019]	0.063	[-0.01, 0.137]		
Precipitation (cm)						
Winter	0.036	[0.01 , 0.063]	0.050	[0.009 , 0.09]		
Spring	0.052	[0.019 , 0.084]	0.066	[0.023 , 0.109]		
Summer	-0.047	[-0.069 , -0.025]	-0.048	[-0.077,-0.018]		
Fall	-0.043	[-0.071 , -0.016]	-0.075	[-0.125 , -0.024]		
Annual	-0.002	[-0.023, 0.018]	-0.006	[-0.044, 0.031]		

Notes: Marginal effects at average temperature and precipitation east of the 100th meridian

OLS vs Lasso: Coefficients

		OLS		Lasso				
	Coef	959	% CI	Coef		OLS	Lasso	
T win	-0.034	-0.126	0.058	-0.011	Temperature Marginal (°C)		al (°C)	
T win sq	0.003	0.000	0.007	0.003	Winter	-0.023	-0.001	
T spr	0.223	0.017	0.429	0.133	Spring	-0.023	-0.084	
T spr sq	-0.009	-0.014	-0.004	-0.008	Summer	-0.065		
T sum	-0.128	-0.442	0.186		Fall	0.167	0.134	
T sum sq	0.001	-0.004	0.007					
T aut	0.219	-0.037	0.474	0.134	Annual	0.057	0.048	
T aut sq	-0.002	-0.010	0.007					
P win	-0.022	-0.090	0.046					
P win sq	0.005	0.001	0.008	0.003	Precipitatio	Precipitation Marginal (cm)		
P spr	0.229	0.106	0.352	0.192	Winter	0.041	0.048	
P spr sq	-0.008	-0.013	-0.002	-0.006	Spring	0.086	0.077	
P sum	-0.081	-0.162	-0.001	-0.074	Summer	-0.044	-0.043	
P sum sq	0.002	-0.001	0.005	0.002	Fall	-0.094	-0.220	
P aut	-0.053	-0.168	0.062	-0.029				
P aut sq	0.000	-0.006	0.006	-0.001	Annual	-0.012	-0.139	

OLS vs Lasso: Out-of-sample Forecasting Accuracy

- ▶ 120 Random samples of 50% of counties to train the model
- ► Prediction on the remaining 50%
- ► Out-of-sample RMSE

Model	Mean	St. Dev.	Min	Max
OLS	0.275	0.024	0.2534	0.372
Lasso	0.268	0.014	0.2531	0.339

Outline

Introduction

Methods

Data

Preliminary Results

Conclusions

Conclusions

- Omitted climate variables correlated with included climate variables and land values.
- ► Complex modeling choices, many variables, interactions.
- Methods for selection of variables.
- ► Preliminary results suggest
 - Temperature and precipitation coefficients may be biased by omitted climate variables.
 - ► Lasso coefficients different from OLS coefficients.
 - Lasso has lower out-of-sample forecasting RMSE than OLS.