Marilyn A. Brown

Regents Professor

Member Of:
  • School of Public Policy
  • Center for Urban Innovation
  • Climate and Energy Policy Laboratory
  • Technology Policy and Assessment Center
Fax Number:
404-385-0504
Office Location:
DM Smith 312
Overview

Marilyn Brown is a professor in the School of Public Policy. She joined Georgia Tech in 2006 after a distinguished career at the U.S. Department of Energy's Oak Ridge National Laboratory, where she led several national climate change mitigation studies and became a leader in the analysis and interpretation of energy futures in the United States.

Her research focuses on the design and impact of policies aimed at accelerating the development and deployment of sustainable energy technologies, with an emphasis on the electric utility industry, the integration of energy efficiency, demand response, and solar resources, and ways of improving resiliency to disruptions. Her books include Fact and Fiction in Global Energy Policy (Johns Hopkins University Press, 2016), Green Savings: How Policies and Markets Drive Energy Efficiency (Praeger, 2015), and Climate Change and Global Energy Security (MIT Press, 2011). She has authored more than 250 publications. Her work has had significant visibility in the policy arena as evidenced by her numerous briefings and testimonies before state legislative bodies and Committees of both the U.S. House of Representatives and Senate.

Dr. Brown co-founded the Southeast Energy Efficiency Alliance and chaired its Board of Directors for several years. She has served on the boards of directors of the American Council for an Energy-Efficient Economy and the Alliance to Save Energy, and was a commissioner with the Bipartisan Policy Center. She has served on 8 National Academies committees and currently serves on the editorial boards of three journals:  Energy Policy, Energy Efficiency and Energy Research and Social Science. She is serving her second term as a Presidential appointee to the Board of Directors of the Tennessee Valley Authority, the nation’s largest public power provider, and she serves on DOE’s Electricity Advisory Committee.

Education:
  • Ph.D., Ohio State University, Geography
  • M.R.P., University of Massachusetts, Regional Planning
  • B.A., Rutgers University, Political Science
Awards and
Distinctions:
  • 2017, Regents Professor
  • Brook Byers Chaired Professor, Institute of Sustainable Systems, 2014-2018.
  • 2016 Alliance to Save Energy "Star of Energy Efficiency"
  • DOE Electricity Advisory Board, 2014-2018
  • 2013, “Who’s Who in Sustainability”, Atlanta Business Chronicle.
  • DOE Ambassador for Clean Energy Education and Empowerment, 2013-2017
  • 2012 Southface Energy Institute Award of Excellence
  • Presidential Appointment: Board of Directors, TVA, 2010-2017.
  • 2007 Co-recipient of the Nobel Prize for co-authorship of the IPCC Report on Mitigation of Climate Change
Areas of
Expertise:
  • Behavioral-based Modeling Of Climate And Energy Policy
  • Electric Utility Economics And Regulation
Interests
Research Fields:
  • Clean Energy
  • Climate Change Adaptation
  • Climate Change Mitigation
  • Energy Efficiency
  • Energy Markets
  • Energy, Climate and Environmental Policy
  • Financing and Subsidies
  • Information Programs
  • Innovation and Diffusion
  • Institutional Analysis
  • Market-based Incentives
  • Regulations and Standards
  • Smart Grid
  • Transportation
  • Voluntary Programs
Geographic
Focuses:
  • Europe
  • United States
  • United States - Georgia
  • United States - Southeast
Issues:
  • Energy
  • Environment
Courses
  • PUBP-3350: Energy Policy
  • PUBP-6201: Public Policy Analysis
  • PUBP-6701: Energy Technol & Policy
  • PUBP-8833: Special Topics
Recent Publications

Journal Articles

  • Climate research priorities for policy-makers, practitioners, and scientists in Georgia, USA
       In: Environmental Management

    May 2018

    Climate change has far-reaching effects on human and ecological systems, requiring collaboration across sectors and disciplines to determine effective responses. To inform regional responses to climate change, decision-makers need credible and relevant information representing a wide swath of knowledge and perspectives. The southeastern U. S. State of Georgia is a valuable focal area for study because it contains multiple ecological zones that vary greatly in land use and economic activities, and it is vulnerable to diverse climate change impacts. We identified 40 important research questions that, if answered, could lay the groundwork for effective, science-based climate action in Georgia. Top research priorities were identified through a broad solicitation of candidate research questions (180 were received). A group of experts across sectors and disciplines gathered for a workshop to categorize, prioritize, and filter the candidate questions, identify missing topics, and rewrite questions. Participants then collectively chose the 40 most important questions. This cross-sectoral effort ensured the inclusion of a diversity of topics and questions (e.g., coastal hazards, agricultural production, ecosystem functioning, urban infrastructure, and human health) likely to be important to Georgia policy-makers, practitioners, and scientists. Several cross-cutting themes emerged, including the need for long-term data collection and consideration of at-risk Georgia citizens and communities. Workshop participants defined effective responses as those that take economic cost, environmental impacts, and social justice into consideration. Our research highlights the importance of collaborators across disciplines and sectors, and discussing challenges and opportunities that will require transdisciplinary solutions.

  • Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications
       In: Energy Policy

    May 2018

    The Chinese power sector faces a significant challenge in attempting to mitigate its CO2 emissions while meeting its fast-growing demand for electricity. To address this challenge, an analytical framework is proposed that incorporates technological learning curves in a technology optimization model. The framework is employed to evaluate the technology trajectories, resource utilization and economic impacts in the power sector of Tianjin in 2005–2050. Using multi-scenario analysis, this study reveals that CO2 emissions could be significantly reduced if relevant mitigation policies are introduced. The main technologies adopted are ultra-super-critical combustion, integrated gasification combined cycle, wind powerhydropower, biomass power, solar photovoltaic power and solar thermal power. Despite uncertainties, nuclear power and CO2 capture and storage technology could be cost competitive in the future. The CO2 emissions cap policy has the advantage of realizing an explicit goal in the target year, while the renewable energy policy contributes to more cumulative CO2 emissions reduction and coal savings. A carbon taxof 320 CNY/ton CO2 would contribute to early renewable energy development and more CO2 reduction in the short run. A sensitivity analysis is conducted to examine the impacts on the power system of learning rates, technology cost reductions and energy fuel price trajectories.

  • Infrastructure Ecology: An Evolving Paradigm for Sustainable Urban Development
       In: Journal of Cleaner Production [Peer Reviewed]

    October 2017

    Increasing urbanization places cities at the forefront of achieving global sustainability. For cities to become more sustainable, however, the infrastructure on which they rely must also become more productive, efficient and resilient. Unfortunately the current paradigm of urban infrastructure development is fragmented in approach lacking a systems perspective. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive components that exchange material, information and energy among themselves and to and from the environment, and exhibit characteristic scaling properties that can be expressed by Zipf's Law. Analyzing them together as a whole, as one would do for an ecological system, provides a better understanding about their dynamics and interactions, and enables system-level optimization. The adoption of this “infrastructure ecology” approach will result in urban (re)development that requires lower investment of financial and natural resources to build and maintain, is more sustainable (e.g. uses less materials and energy and generates less waste) and resilient, and enables a greater and more equitable opportunities for the creation of wealth and comfort. The 12 guiding principles of infrastructure ecology will provide a set of goals for urban planners, engineers and other decision-makers in an urban system for urban (re)development.

  • Machine Learning Approaches to Estimating Commercial Building Energy Consumption
       In: Applied Energy [Peer Reviewed]

    September 2017

  • Peak Shifting and Cross-Class Subsidization: The Impacts of Solar PV on Changes in Electricity Costs
       In: Energy Policy [Peer Reviewed]

    July 2017

  • Commercial Cogeneration Benefits Depend on Market Rules, Rates, and Policies
       In: Environmental Research Letters

    2017

  • Energy Resources and Use
       In: The International Encyclopedia of Geography: People, the Earth, Environment, and Technology [Peer Reviewed]

    2017

  • Energy-Efficiency Skeptics and Advocates: The Debate Heats Up as the Stakes Rise
       In: Energy Efficiency

    2017

  • Exploring the Impact of Energy Efficiency as a Carbon Mitigation Strategy
       In: Energy Policy [Peer Reviewed]

    2017

  • Large-scale PV power generation in China: A grid parity and techno-economic analysis
       In: Energy

    2017

  • U.S. Sulfur Dioxide Emission Reductions: Shifting Factors and a Carbon Dioxide Penalty
       In: The Electricity Journal

    2017

  • Understanding Pressures for Renewable Energy Policy Adoption and Evolution: Coercion, Emulation, Competition and Learning
       In: Journal of Cleaner Production

    2017

Working Papers

  • Carbon Pricing and Energy Efficiency: Pathways to Deep Decarbonization of the U.S. Electric Sector

    May 2018

    Despite the commitment of the Paris agreement to pursue efforts to limit end-of-century global warming to 1.5°C above pre-industrial levels, few have studied mitigation pathways consistent with such a demanding goal. This paper uses a fully integrated engineering-economic model of the U.S. energy system, to explore the ability of the U.S. electricity sector to operate within a budget of 44 gigatons of CO2 (GtCO2) between 2016 and 2040 - almost 20 percent less than projected. Our modeling results suggest that carbon taxes coupled with strong energy-efficiency policies would produce synergistic effects that could meet deep decarbonization goals. Combining energy-efficiency initiatives with a $10/tCO2 tax rising to $27/tCO2 in 2040 (in $2013) would achieve the U.S. electric sector's carbon budget with a net savings to the U.S. economy. A $20/tCO2 tax rising to $53/tCO2 in 2040 would also stay below this budget, but it would cost more if not coupled with strong energy efficiency. U.S. regions will win or lose depending on their generation mix and how carbon tax revenues are recycled.

  • The Economics of Four Virginia Biomass Plants

    March 2018

    Global electricity generated from biomass more than tripled between 2000 and 2016, and it is forecast to grow at an increasing pace through the year 2040. Electricity generation from biomass is also expanding in the United States, particularly in the Southeast. Given the continued growth and policy support for biomass electricity generation, this paper assesses the economics of four Virginia biomass plants, three converted from coal plants in 2012 and one purchased and expanded in 2004. The goal is to estimate the levelized cost of electricity (LCOE) generated from the plants as a metric of their level of competitiveness with respect to alternative ways of meeting electricity demand in the region. The LCOE of the four plants range from $93 to $143/MWh, about 40-53% more expensive than new solar and wind today. Even with the inclusion of federal subsidies and environmental credits, Dominion’s biomass conversions are not competitive with several other established sources of electricity and affordable energy-efficiency options. Overall, our analysis underscores the risks associated with investing in large, long-lived generation assets at a time when technologies and markets are rapidly evolving.

  • Theorizing the Behavioral Dimension of Energy Consumption
       In: Energy and Society Handbook

    January 2018

    This chapter focuses on the well-documented misalignment between energy-related behaviors and the personal values of consumers, which has become a major source of angst among
    policymakers. Despite widespread pro-environmental or green attitudes, consumers frequently purchase non-green alternatives. The chapter identifies 50 theoretical approaches that can be
    divided almost equally into two types: those that emphasize beliefs, attitudes, and values; and those that also consider contextual factors and social norms. Three principles of intervention are recommended: provide credible and targeted information at points of decision; identify and address the key factors inhibiting and promoting the target behaviours in particular populations; and rigorously evaluate programes to provide credible estimates of impact and opportunities for improvements. The chapter recommends that research on the value-action gap be expanded beyond the traditional focus on individuals to include decision-making units such as households, boards of directors, commercial buying units, and government procurement groups.

  • The Clean Power Plan and Beyond

    June 2016

    Since the release of the Clean Power Plan (CPP), stakeholders across the U.S. have vigorously debated the pros and cons of different options for reducing CO2 emissions from electricity generation. This paper examines an array of CPP strategies, ranging from incremental to transformational, and from the near-term to the longer-term. The goal is to identify least-cost options to help policymakers and other stakeholders make well-informed choices. The Georgia Institute of Technology’s National Energy Modeling System is used to evaluate alternative futures. Our modeling suggests that CPP compliance can be achieved cost effectively by expanding new natural gas and renewable electricity generation to replace higher emitting coal plants and by using energy efficiency to curb demand growth, thereby enabling a more affordable pace of plant replacements. Post-2030 policies requiring further CO2 emission reductions, in combination with perfect foresight today, would motivate less natural gas build-out over the next 15 years. The South’s response to the CPP is distinct, with a larger share of coal retirements and a greater proportionate uptake of natural gas, energy efficiency, and renewable resources. In addition to reducing CO2 emissions, these least-cost compliance scenarios would produce substantial collateral benefits including lower electricity bills across all customer classes and significant reductions in local air pollution. https://cepl.gatech.edu/sites/default/files/attachments/NEMS_CPP_Paper_06-24-2016.pdf#